Boom get rickety rick rolled on this guys question
Answer:
A function f(x) is said to be periodic, if there exists a positive real number T such that f(x+T) = f(x).
You can also just say: A periodic function is one that repeats itself in regular intervals.
Step-by-step explanation:
The smallest value of T is called the period of the function.
Note: If the value of T is independent of x then f(x) is periodic, and if T is dependent, then f(x) is non-periodic.
For example, here's the graph of sin x. [REFER TO PICTURE BELOW]
Sin x is a periodic function with period 2π because sin(x+2π)=sinx
Other examples of periodic functions are all trigonometric ratios, fractional x (Denoted by {x} which has period 1) and others.
In order to determine the period of the determined graph however, just know that the period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Hopefully this helped a bit.
Answer:
225 students
Step-by-step explanation:
45 x 5 = 225
1.)
Between year 0 and year 1, we went from $50 to $55.
$55/$50 = 1.1
The price increased by 10% from year 0 to year 1.
Between year 2 and year 1, we went from $55 to $60.50.
$60.50/$55 = 1.1
The price also increased by 10% from year 1 to year 2. If we investigate this for each year, we will see that the price increases consistently by 10% every year.
The sequence can be written as an = 50·(1.1)ⁿ
2.) To determine the price in year 6, we can use the sequence formula we established already.
a6 = 50·(1.1)⁶ = $88.58
The price of the tickets in year 6 will be $88.58.
Answer:
what is the question?
Step-by-step explanation: