Check the picture below. You can pretty much count the units off the grid for its width and length.
Answer:
B. The coefficient of determination is 54.76%. Therefore, 54.76% of the variation in weight can be explained by the regression line.
Step-by-step explanation:
The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.
The coefficient of determination is a measure to quantify how a model explains an dependent variable.
The formula for the correlation coeffcient is given by:
![r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7Bn%28%5Csum%20xy%29-%28%5Csum%20x%29%28%5Csum%20y%29%7D%7B%5Csqrt%7B%5Bn%5Csum%20x%5E2%20-%28%5Csum%20x%29%5E2%5D%5Bn%5Csum%20y%5E2%20-%28%5Csum%20y%29%5E2%5D%7D%7D)
The formula for the coefficient of determination is 
In our case the correlation coefficient obtained was 0.74
And the determination coefficient is
, and if we convert this into % we got 54.76%
Assume that height is the predictor (X) and weight is the response (Y)
And the best answer for this case is:
B. The coefficient of determination is 54.76%. Therefore, 54.76% of the variation in weight can be explained by the regression line.
Answer:
2 vertically and -11 horizontally
Explanation:
the graph shifts 2 vertically and -11 horizontally
note: vertically is up ↑ and bottom ↓ , horizontal is right → and left ←
The answer is non-linear and increasing. hope this helps
<h2>please help ♥️♥️♥️♥️</h2>
<h2>haha lol </h2>
<h2 />