Answer:
See explanation below
Step-by-step explanation:
<u>First we will solve the radical equation</u> (which I guess was problem 1),
Let's start by simplifying it:

Now we will solve the equation by squaring both sides of the equation:

So the calculation for x was that x = -10
However, this does not produce a solution to the equation: When we plug this value into the radical equation we get:

This happens because <u>when we first squared both sides of the equation in the first part of the problem we missed one value for x </u>(remember that all roots have 2 answers, a positive one and a negative one) while squares are always positive.
When we squared the root, we missed one value for x and that is why the calculation does not produce a solution to the equation.
Answer:
infinite
Step-by-step explanation:
1/6 of 12 is 2
1/6 of 18 is 3
Plug them in
2z-3=2z-3
meaning you can put literally any number in place of z and it'd work.
Answer:
85
Step-by-step explanation:
hello :
if : g(x)= x+7; h(x)= (x-3)² so : (4g+h)(x)=4g(x)+h(x) = 4(x+7)+(x-3)²
(4g+h)(8)= 4(8+7)+(8-3)² = 60+25=85
If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
g=3
Step-by-step explanation:
9 - g = 2g
+g +g
9=3g
divide both sides by 3
g=9