Answer:
C.
Step-by-step explanation:
p(x)=sin(x) is an odd function since sin(-x)=-sin(x).
q(x)=cos(x) is an even function since cos(-x)=cos(x).
r(x)=tan(x) is an odd function since tan(-x)=-tan(x).
s(x)=csc(x) is an odd function since csc(-x)=-csc(x).
So the only contender seems to be C.
Let's check. To check we have to plug in (-x) in place of (x) and see if we get the same function back since we are looking for an even function.

Replace (x) with (-x):


since cosine is even; that is cos(-u)=cos(u) where u in this case is
.
So f is even.
Answer:
x=64°
Step-by-step explanation:
x=180-90-26 (angles on a str line)
=64°
Answer:
The rocket will reach its maximum height after 6.13 seconds
Step-by-step explanation:
To find the time of the maximum height of the rocket differentiate the equation of the height with respect to the time and then equate the differentiation by 0 to find the time of the maximum height
∵ y is the height of the rocket after launch, x seconds
∵ y = -16x² + 196x + 126
- Differentiate y with respect to x
∴ y' = -16(2)x + 196
∴ y' = -32x + 196
- Equate y' by 0
∴ 0 = -32x + 196
- Add 32x to both sides
∴ 32x = 196
- Divide both sides by 32
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
∴ The rocket will reach its maximum height after 6.13 seconds
There is another solution you can find the vertex point (h , k) of the graph of the quadratic equation y = ax² + bx + c, where h =
and k is the value of y at x = h and k is the maximum/minimum value
∵ a = -16 , b = 196
∴ 
∴ h = 6.125
∵ h is the value of x at the maximum height
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds