1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
2 years ago
15

If a recipe calls fo 2 tbsp how many tsp is that

Mathematics
1 answer:
wlad13 [49]2 years ago
3 0
6 because each tablespoon is 3 teaspoons. Hope this helps.
You might be interested in
Find the slope and y-intercept. Help a girl out I’ll give you ten points.
JulsSmile [24]
(4,4)..........................ik this is wrong
6 0
2 years ago
Read 2 more answers
Could use some help with these. They r confusing!!
Gala2k [10]

Step-by-step explanation:

The top part is a cone.  It's volume is:

V = ⅓ π r² h

where r is the radius (half the diameter) and h is the height.

The bottom part is a cylinder.  It's volume is:

V = π r² h

where r is the radius (half the diameter) and h is the height.

The radius of the cone is 36/2 = 18 ft, and the height is 12 ft.  So the volume is:

V = ⅓ π (18 ft)² (12 ft)

V = 4,071.5 ft³

The radius of the cylinder is 36/2 = 18 ft, and the height is 39 ft.  So the volume is:

V = π (18 ft)² (39 ft)

V = 39,697.2 ft³

Therefore, the total volume is:

4,071.5 ft³ + 39,697.2 ft³ ≈ 43,769 ft³

4 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
A bug starts at the origin of the coordinate plane. The bug moves 1/4 units right and 1/4 units down to point A. Which graph sho
Vsevolod [243]

Answer:

<h2>The Answer would be (0.25, -0.25)</h2>

Step-by-step explanation:

Since you started at the origin of the plane, it would be obvious that your place would be 0.25 on the x-axis. The template for this would be (x,y) x- right and left. y- up and down. On the y-axis, the bug moved 0.25 DOWN to point A. That would be a negative since on the y-axis, it counts up to positives and down to negative. Similar to the x-axis, it counts right to positives, left to negatives. Hope this helped!

3 0
3 years ago
Read 2 more answers
What is the answer for this question? 6x^2 - 35x + 49 ( factorising quadratics btw)
tino4ka555 [31]

Answer:

x=7/2  x=7/3

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Which mathematical statements are true?
    15·1 answer
  • The difference of a number and six is seven. Find the number.
    10·1 answer
  • Determine the equation of the graph, and select the correct answer below.
    14·2 answers
  • Which is the opposite of -5?
    15·1 answer
  • PLEASE HELP MEHHHH! ITS IN MATHHH
    10·1 answer
  • God please help me i’ve been stuck on this problem for hours and i’m so hungry:(
    12·2 answers
  • Evaluate the expression 10−5a+(18−b), where a=2 and b=11.
    14·1 answer
  • Katherine and David each improved their yards by planting roses and tulips, they bought their supplies from the same store. Kath
    11·1 answer
  • Can someone pls help me .. will mark brainliest !
    8·1 answer
  • I need help quickly, what is 6(s−9)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!