Answer:
CORRECTED QUESTION:
Two cities have nearly the same north-south line of 110 degrees Upper W. The latitude of the first city is 23 degrees Upper N, and the latitude of the second city is 36 degrees N. Approximate the distance between the cities if the average radius of Earth is 6400 km.
ANSWER: 1452.11 km
Step-by-step explanation:
Since the two cities both lies on the Northern latitude of the sphere along the same longitude, we are going to subtract the angles the latitude that each city subtend at the equator.
36 - 23 = 13 degrees i.e the angles between the with two cities on a cross section the large circle formed by the longitude and its center.
Applying the formula for the length of an arc on a sector on the large circle
(∅/ 360) x 2πR
where, ∅ = is the angle between the two cities
R = radius of the Earth.
13/360 x 2 x π x 6400 = 1452.11 km
Answer:
The answer is A
Step-by-step explanation:
Starting from -3 in the Y values of option A. If you subtract three from each value, you will get the next value to the right.
- -3 minus -3 = -6
- -6 minus -6 = -9
Answer:
rational
Step-by-step explanation:
336 divided by 2 is 168.
so just change it up.
the two numbers can be 166+170
Answer:
3. d= 20mm
4. r= 8 in
5. d= 14 mi
6. r= 11 yd
Step-by-step explanation:
Radius is half of diameter.
Example:
What is the diameter of a circle with a radius of 4?
If r = 4, d = 8
Do radius times 2.
Example 2:
What is the radius of a circle with a diameter of 10?
D = 10, so r = 5
Do diameter divided by 2.