Answer:
B) the mobility of their hosts
Explanation:
A pathogen that attacks an oak trees and a pathogen that attacks humans doesn't really have that big of a difference, but on the other side we can see that the pathogen that attacks the oak trees is spreading out much less and over much smaller territory than the pathogen attacking humans. The main reason behind this is the mobility of the host of the pathogen and where the host of it lives. In the case with the oak trees, the pathogen will be migrating very slowly over smaller distance because there's only certain places where the oak trees live, and also they are not mobile, and the pathogen will be able to spread out only through their seeds and cones which is a slow process. On the other hand, the pathogen attacking humans will manage to spread out very quickly over very large area because there are humans living in lot of places, their numbers are high, and their mobility is easy and quick over large distances, so the pathogen will travel with its host easily for hundreds or thousands of kilometers and then spread out in another place far away.
With sleep deprivation, the levels of leptin fall and the levels of ghrelin rise.
What is leptin ?
Your body secretes a hormone called leptin that aids in long-term maintenance of your normal weight. Your blood's concentration of leptin and how much body fat you have are intimately correlated. Despite the fact that your body has enough fat reserves, leptin resistance makes you feel hungry and make you eat more.
What is ghrelin ?
Small amounts of ghrelin are also released by the small intestine, pancreas, and brain. Ghrelin is primarily synthesized and released by the stomach.
To learn more about Ghrelin click on the link below:
brainly.com/question/7747313
#SPJ4
PART 1
1. The answer is low frequency electromagnetic waves are able to go around obstacles due to their larger wavelengths. This characteristic of lower frequency waves is due to their ability to diffract around obstacles such as buildings and hills. Therefore, they transmit over long distances unlike high frequency electromagnetic waves.
2. One disadvantage is interference. Electromagnetic waves of the same frequency transmitted at the same time will interfere with one other and therefore the signal will be lost or scrambled. Other electromagnetic waves such as microwaves are affected (interfered with) by weather elements.
3. Analogue signals are continuous signals with wave-like properties while digital signals are discrete signals or pulse (ons (1s) and offs (0s) that represent bits). Analogue signal is represented by a sine-wave while digital signal is represented by discrete squares waves.
4. Digital signals are less immune to eavesdropping unlike analogue signals. Analogue signal is also more prone to distortion unlike digital signal. Digital signals transmit more data than analogue signals. Digital signal draw less energy to transmit compared to analogue signal.
5. Broadcasting of TV is nowadays using digital signals due to the high number of available channels. Computers and the interne utilize digital signaling to transmit data. Controls systems such as radar system also use aspects of analogue waves. Sensors also utilize analogue waves especially transducers such as seismology equipment.
PART 2
1. One way is by sending radio waves to probes sent out in space to give them commands during exploration. Radio telescopes also pick up naturally-occurring radio waves from space and analyze the data to make conclusions about space and the astronomical objects.
2. Radio waves are used in communication by transmitting data over long distances. One example is its use TV transmission. Another is through military defense of airspace. The radio waves are used to detect enemy intrusion into restricted airspaces using radar.
3. It is common that signal from the environment will be in analogue signal format. The conversion to digital signals allows for the digital equipment in the telescope to interpret and analyze the data. Telescopes prefer digital equipment because they consume less power, handle more data, and are less prone to intrusion, and distortion, hence more secure to analogue equipment.