The value of n in given proportion is 16
<u><em>Solution:</em></u>
We have to find the value of "n" in the proportion
<em><u>Given proportion is:</u></em>
<em><u></u></em>
<em><u></u></em>
We can solve the above proportion by cross-multiplying
Multiply the numerator of the left-hand fraction by the denominator of the right-hand fraction
Multiply the numerator of the right-hand fraction by the denominator of the left-hand fraction
Set the two products equal to each other
Solve for the variable




Thus the value of n in given proportion is 16
Answer:
Yes
Step-by-step explanation:
If you graph it... and they intersect there is a sloution.
soloution!:y=0
x=-1.5
Answer: 15e^5x
Step - by - step
y=3e^5x - 2
By the sum rule, the derivative of 3e^5x - 2 with respect to x is d/dx [ 3e^5x ] + d/dx [-2].
d/dx [ 3e^5x ] + d/dx [ -2 ]
Evalute d/dx [ 3e^5x ]
Since 3 is constant with respect to x , the derivative of 3e^5x with respect to x is
3 d/dx [ e^5x ].
3 d/dx [ e^5x ] + d/dx [ -2 ]
Differentiate using the chain rule, which states that d/dx [ f(g(x))] is f' (g(x)) g' (x) where f(x) = e^x and g(x) = 5x.
To apply the Chain Rule, set u as 5x.
3 ( d/du [ e^u] d/dx [5x] ) + d/dx [ -2]
Differentiate using the Exponential rule which states that d/du [ a^u ] is a^u ln(a) where a=e.
3( e^u d/dx[5x] ) + d/dx [ -2 ]
Replace
3(e^5x d/dx [5x] ) + d/dx [ -2 ]
3(e^5x( 5 d/dx [x] )) + d/dx [ -2 ]
Diffentiate using the Power Rule which states that d/dx [x^n] is nx^n-1 where n=1.
3(e^5x(5*1)) + d/dx [-2]
3 ( e^5x * 5 ) + d/dx [-2]
Multiply 5 by 3
15e^5x + d/dx [-2]
Since -2 is constant with respect to x, the derivative of -2 with respect to x is 0.
15e^5x + 0
15e^5x
Answer:
It's line C.
Step-by-step explanation:
the slope of line C is 1/2 so that's the constant of proportionality