keeping in mind that 4 months is not even a year, since there are 12 months in a year, 4 months is then 4/12 years.
let's assume is simple interest.
![\bf ~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$34300\\ r=rate\to 3.5\%\to \frac{3.5}{100}\dotfill &0.035\\ t=years\to \frac{4}{12}\dotfill &\frac{1}{3} \end{cases} \\\\\\ A=34300\left[ 1+(0.035)\left( \frac{1}{3} \right) \right]\implies A= 34300(1.011\overline{6})\implies A=34700.1\overline{6}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%20%5C%2434300%5C%5C%20r%3Drate%5Cto%203.5%5C%25%5Cto%20%5Cfrac%7B3.5%7D%7B100%7D%5Cdotfill%20%260.035%5C%5C%20t%3Dyears%5Cto%20%5Cfrac%7B4%7D%7B12%7D%5Cdotfill%20%26%5Cfrac%7B1%7D%7B3%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D34300%5Cleft%5B%201%2B%280.035%29%5Cleft%28%20%5Cfrac%7B1%7D%7B3%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20A%3D%2034300%281.011%5Coverline%7B6%7D%29%5Cimplies%20A%3D34700.1%5Coverline%7B6%7D)
About 7
because 5^2+5^2 is 50 and then you take the sq root of 50 which is about 7
∠FEG is an exterior angle.
An exterior angle of a triangle is equal to the sum of the opposite interior angles, so
2x + x = x + 40
3x = x + 40
3x - x = 40
2x = 40
x = 20
m∠FEG = x+40 = 20+40 = 60°
Answer:
Step-by-step explanation:
<em>(5√3*√3)+(5√3*5)+(-1*√3)+(-1*5) </em>
<em>5*3+25√3-√3-5 </em>
<em>15+24√3-5 </em>
<em>**24√3+10** </em>
<em></em>
<em>Then to solve the second, apply division rules within the radical. This means you can cancel an m^1 and n^4 from the bottom and top of the fraction. This leaves... </em>
<em>3√(88m^19*n^8) </em>
<em>(That might be all you need to do, otherwise you can take the square root of each number in the term giving... </em>
<em>3(√88)*m^9.5*n^4)</em>
<em></em>
<em>Hope I made it clear enough</em>
<em></em>
<em>Please give me Brainliest</em>
Answer:
i think it correct
Step-by-step explanation: