1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
3 years ago
8

12times12 i need a lot of help please!!!!!!!!!!

Mathematics
1 answer:
notsponge [240]3 years ago
5 0

12 \times 12 = 144
Please mark me as brainliest I need Virtuoso rank very much thanks <3
You might be interested in
Find the next term.<br><br> −6, −9, −12, −15, −18, . . .
ycow [4]

Answer:

-21 is the answer , hope it helps

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
I need help with number 12 I’ll rate 5 stars if you help
Brrunno [24]

Answer:

0.25in.

Step-by-step explanation:

5÷20=0.25in.

8 0
3 years ago
What is the answer to f(x)=x^2-10x+4 f(-2)
Maru [420]

Answer:

Step-by-step explanation:

f(x)=4+20+4

    =28

3 0
3 years ago
Pls answer fast IMPORTANT HURRY!!!! Why did the chicken cross the road
erma4kov [3.2K]

Answer:

To get to the other side :o

Step-by-step explanation:

So first the chicken walks across the road and then gets to the other side mark brainliest please :)

5 0
3 years ago
Read 2 more answers
f(x) = 3 cos(x) 0 ≤ x ≤ 3π/4 evaluate the Riemann sum with n = 6, taking the sample points to be left endpoints. (Round your ans
Kruka [31]

Answer:

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

Step-by-step explanation:

We want to find the Riemann sum for \int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx with n = 6, using left endpoints.

The Left Riemann Sum uses the left endpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)

where \Delta{x}=\frac{b-a}{n}.

Step 1: Find \Delta{x}

We have that a=0, b=\frac{3\pi }{4}, n=6

Therefore, \Delta{x}=\frac{\frac{3 \pi}{4}-0}{6}=\frac{\pi}{8}

Step 2: Divide the interval \left[0,\frac{3 \pi}{4}\right] into n = 6 sub-intervals of length \Delta{x}=\frac{\pi}{8}

a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b

Step 3: Evaluate the function at the left endpoints

f\left(x_{0}\right)=f(a)=f\left(0\right)=3=3

f\left(x_{1}\right)=f\left(\frac{\pi}{8}\right)=3 \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}=2.77163859753386

f\left(x_{2}\right)=f\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}=2.12132034355964

f\left(x_{3}\right)=f\left(\frac{3 \pi}{8}\right)=3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=1.14805029709527

f\left(x_{4}\right)=f\left(\frac{\pi}{2}\right)=0=0

f\left(x_{5}\right)=f\left(\frac{5 \pi}{8}\right)=- 3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=-1.14805029709527

Step 4: Apply the Left Riemann Sum formula

\frac{\pi}{8}(3+2.77163859753386+2.12132034355964+1.14805029709527+0-1.14805029709527)=3.09955772805315

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

5 0
3 years ago
Other questions:
  • Maximize C = 6x+4y
    14·1 answer
  • What is the answer to this problem?<br> A=πr(r+√[h^2+r^2])
    8·1 answer
  • The functions f(x) = (x + 1)2 − 2 and g(x) = −(x − 2)2 + 1 have been rewritten using the completing-the-square method. Apply you
    9·1 answer
  • What is the volume of the right prism?
    12·1 answer
  • PLEASE ANSWER FAST<br> Question in picture<br> (question 31)
    6·2 answers
  • angle a and angle C are vertical angles if the measure of angle a equals 3x + 7° and measure of angle C equals x + 53° what is t
    9·1 answer
  • 9-9÷9+9-9÷9=??????<br><br><br> 25 points <br><br><br> and brainits for the first right answer
    5·2 answers
  • What is t in the equation 6t+31=41
    11·2 answers
  • Which table does not represent a function?
    15·1 answer
  • Please help me on this one I wrote it out :(
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!