Answer:
en qué grado estas bueno si me entiendes xq yo no hablo inglés
9514 1404 393
Answer:
∠A = 44°
Step-by-step explanation:
In order to find the measure of angle A, you need to know the value of the variable x. This means you need some relation that you can solve to find x.
Happily, that relation is "the sum of angles in a triangle is 180°." This means ...
84° +(x +59)° +(x +51)° = 180°
(2x + 194)° = 180° . . . collect terms
2x = -14 . . . . . . . . . . divide by °, and subtract 194
x = -7 . . . . . . . . . . . .divide by 2
Now, the measure of angle A is ...
∠A = (x +51)° = (-7 +51)°
∠A = 44°
How many friends are there
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1