Good Afternoon,
Okay so we have 15 hours already, now we need to add 60 minutes, which is exactly an hour.
So, 15 Hours + 1 Hour = 16 Hours.
16 Hours is your answer, I hope I helped and good luck studying!
Thank you,
Darian D.
1. Any number above 13 works. Why? Because 20-7=13, and to be greater than 20, you must add a number larger than 13.
Examples: 14+7 > 20, 30+7 > 20, 100+7 > 20
2. Any number below 25/3 (which is also 8.3 with a repeating 3) works. Why? Because 25/3=8.3 with a repeating 3, and to remain less than 25, you must multiply by a number less than 8.3 with a repeating 3.
Examples: 3(8) < 25, 3(5) < 25, 3(0) < 25
3. 4 buses. 1 bus will hold 60 students, 2 will hold 120, 3 will hold 180, and 4 will hold 240. The question is trying to trick you into putting now 3.3333333333... buses because that's what 200/60 is, but there is no such thing as a third of a bus. So you need at least 4 buses. (There will be an extra 40 spaces for passengers on the 4th bus, but that is okay.)
To find this answer I did 200/60 and got 3.3 with a repeating 3. You must round to the higher whole number. Rounding down to 3 buses leaves you with 20 students without a bus.
4. 19 boxes. 18 boxes will only hold 288 candies. The question is trying to trick you into putting down 18.75 boxes because that's what 300/16 is, but there is no such thing as 75% of a box. So you need at least 19 boxes. (There will be an extra 4 spaces for candies in the 19th box, but that is okay.)
To find this answer I did 300/16 and got 18.75. You must round to the higher whole <span>number. Rounding down to 18 boxes leaves you with 12 candies without a box.</span>
The answer to your question is -10
Answer:
Step-by-step explanation:
b=bench
852=b+(b-98) since the table is less than the bench by 98$
852-b=b-98
950-b=b
950=2b
475=b
Answer: 2343 / 256
Explanation
I will do this for you in two forms: 1) adding each term, and 2) using the general formula for the sum of geometric series.
1) Adding the terms:
4
∑ 3 (3/4)^i = 3 (3/4)^0 + 3 (3/4)^1 + 3 (3/4)^2 + 3 (3/4)^3 + 3 (3/4)^4
i=0
= 3 + 9/4 + 27/16 + 81/64 + 243/256 = [256*3 + 27*16 + 64*9 + 4*81 + 243] / 256 =
= 2343 / 256
2) Using the formula:
n-1
∑ A (r^i) = A [1 - r^(n) ] / [ 1 - r]
i=0
Here n - 1 = 4 => n = 5
r = 3/4
A = 3
Therefore the sum is 3 [ 1 - (3/4)^5 ] / [ 1 - (3/4) ] =
= 3 [ 1 - (3^5) / (4^5) ] / [ 1/4 ] = 3 { [ (4^5) - (3^5) ] / (4^5) } / {1/4} =
= (3 * 781) / (4^5) / (1/4) = 3 * 781 / (4^4) = 2343 / 256
So, no doubt, the answer is 2343 / 256