2/9=2.50
Allowence=2.50x9 divided by which gives you an answer of 11.25
Hope this helps you!
Answer:
First, a rational number is defined as the quotient between two integer numbers, such that:
N = a/b
where a and b are integers.
Now, the axiom that we need to use is:
"The integers are closed under the multiplication".
this says that if we have two integers, x and y, their product is also an integer:
if x, y ∈ Z ⇒ x*y ∈ Z
So, if now we have two rational numbers:
a/b and c/d
where a, b, c, and d ∈ Z
then the product of those two can be written as:
(a/b)*(c/d) = (a*c)/(b*d)
And by the previous axiom, we know that a*c is an integer and b*d is also an integer, then:
(a*c)/(b*d)
is the quotient between two integers, then this is a rational number.
Answer:
A, B
Step-by-step explanation:
A. 12/3=4
B. 4/1=4
C. 6/4=1 1/2
D. 4/6=2/3
Answer:
69.14% probability that the diameter of a selected bearing is greater than 84 millimeters
Step-by-step explanation:
According to the Question,
Given That, The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters.
- In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σ
we have μ=87 , σ=6 & X=84
- Find the probability that the diameter of a selected bearing is greater than 84 millimeters
This is 1 subtracted by the p-value of Z when X = 84.
So, Z = (84-87)/6
Z = -3/6
Z = -0.5 has a p-value of 0.30854.
⇒1 - 0.30854 = 0.69146
- 0.69146 = 69.14% probability that the diameter of a selected bearing is greater than 84 millimeters.
Note- (The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X)