Step-by-step explanation:
Q1 . (f+g)(x) = f(x) + g(x)
=4x-4 +2x^2 -3x
= 2x^2 + x -4
Q2. (f-g)(x) = f(x) - g(x)
= 2x^2−2 - (4x+1)
= 2x^2 -2 -4x -1
= 2x^2 - 4x -3
Q3. h(x)=3x−3 and g(x)=x^2+3
(h.g)(x) = h(x) × g(x)
= (3x-3) × (x^2 + 3)
=3x^3 -3x^2 + 9x -9
Q4.f(x)=x+4 and g(x)=x+6
(f/g)(x) = f(x) ÷ g(x)
= x+4 / x+6
the domain restriction is x>-6
x<-6
x doesn't equal (-6)
First you transform the expression and then evaluate the power
Answer:
Point slope is ( Y+4) = 1/2(x+3)
Slope intercept is Y = 1/2(x) -5/2
Step-by-step explanation:
For the point slope form.
Given the point as (-3,-4)
And the gradient m = 1/2
Point slope form is
(Y - y1) = m(x-x1)
So
X1 = -3
Y1 = -4
(Y - y1) = m(x-x1)
(Y - (-4)) = 1/2(x -(-3))
( Y+4) = 1/2(x+3)
For the slopes intercept form
Y = mx + c
We can continue from where the point slope form stopped.
( Y+4) = 1/2(x+3)
2(y+4)= x+3
2y + 8 = x+3
2y = x+3-8
2y = x-5
Y = x/2 - 5/2
Y = 1/2(x) -5/2
Where -5/2 = c
1/2 = m
Answer:
-6
Step-by-step explanation: