Length: 2w + 59
width: w
diagonal: (2w + 59) + 2 = 2w + 61
Length² + width² = diagonal²
(2w + 59)² + (w)² = (2w + 61)²
(4w² + 118w + 3481) + w² = 4w² + 122w + 3721
5w² + 118w + 3481 = 4w² + 122w + 3721
w² + 118w + 3481 = 122w + 3721
w² - 4w + 3481 = 3721
w² - 4w - 240 = 0
a = 1, b = -4, c = -240
w = ![[-(b) +/- \sqrt{(b)^{2} - 4(a)(c) }]/2(a)](https://tex.z-dn.net/?f=%5B-%28b%29%20%2B%2F-%20%5Csqrt%7B%28b%29%5E%7B2%7D%20%20-%204%28a%29%28c%29%20%7D%5D%2F2%28a%29)
= ![[-(-4) +/- \sqrt{(-4)^{2} - 4(1)(-240) }]/2(1)](https://tex.z-dn.net/?f=%5B-%28-4%29%20%2B%2F-%20%5Csqrt%7B%28-4%29%5E%7B2%7D%20%20-%204%281%29%28-240%29%20%7D%5D%2F2%281%29)
=
=
=
=
since width cannot be negative, disregard 1 - 2√61
w = 1 + 2√61 ≈ 16.62
Length: 2w + 59 = 2(1 + 2√61) + 59 = 2 + 4√61 + 59 = 61 + 4√61 ≈ 92.24
Answer: width = 16.62 in, length = 92.24 in
Answer:
1
Step-by-step explanation:
all you do is multiple then devide
Answer: yo no Abbas
Step-by-step explanation:
Given:
m∠ABC = 118°
m∠DAC = (9x - 33)°
m∠CAB = (2x + 7)°
To find:
The value of x.
Solution:
Sum of the adjacent angles in a parallelogram = 180°
m∠ABC + m∠CAB + m∠DAC = 180°
118° + 9x° - 33° + 2x° + 7° = 180°
92° + 11x° = 180°
Subtract 92° from both sides.
92° + 11x° - 92° = 180° - 92°
11x° = 88°
Divide by 11° on both sides.
x = 8
The value of x is 8.