Answer:
gay
Suppose we have a simple random sample of 400 households drawn from a city with 40,000 households . A 95% confidence interval estimate for the population mean number of children per household is [1.1,2.3]. Given this, what is the lower confidence limit for the total number of children in the city
You are not correct, the right answer should be 5-2 square root symbol. I couldn't find out how to put one there.
That would be 7 - (-7) = 7 + 7 = 14 degrees F
Simplify:
5(a + 5) + -3 = 3(2 + -1a)
Reorder the terms:
5(5 + a) + -3 = 3(2 + -1a)
(5 * 5 + a * 5) + -3 = 3(2 + -1a)
(25 + 5a) + -3 = 3(2 + -1a)
Reorder the terms again:
25 + -3 + 5a = 3(2 + -1a)
Combine like terms:
]25 + -3 = 22
22 + 5a = 3(2 + -1a)
22 + 5a = (2 * 3 + -1a * 3)
22 + 5a = (6 + -3a)
Solve:
22 + 5a = 6 + -3a
To solve for variable 'a':
You have to move all terms containing A to the left, all other terms to the right.
Then add '3a' to each side of the equation:
22 + 5a + 3a = 6 + -3a + 3a
Combine like terms:
5a + 3a = 8a
22 + 8a = 6 + -3a + 3a
Combine like terms again:
-3a + 3a = 0
22 + 8a = 6 + 0
22 + 8a = 6
Add '-22' to each side of the equation.:
22 + -22 + 8a = 6 + -22
Combine like terms:
22 + -22 = 0
0 + 8a = 6 + -22
8a = 6 + -22
Combine like terms once more:
6 + -22 = -16
8a = -16
Divide each side by '8'.
a = -2
Simplify:
a = -2
Answer: a=-2
Hope I could help! :)
Answer: 5
Step-by-step explanation:
Let A denotes the number of major defects and B denotes the number of design defect.
By considering the given information, we have

Now, the number of major defects or design defects:

Also,

Hence, the number of design defects were major=5