Answer:
a) CI = ( 5,1 ; 5,7 )
b) SE = 0,1
Step-by-step explanation:
a) Sample random n = 100
Mean = μ = 5,4
Standard deviation s = 1,3
CI = 99 % α = 1 % α = 0,01 α/2 = 0,005
z(c) for 0,005 is from z-table z(c) = 2,575
z(c) = ( X - μ ) /s/√n CI = μ ± z(c) * s/√n
CI = 5,4 ± 2,575* 1,3/10
CI = 5,4 ± 0,334
CI = ( 5,1 ; 5,7 )
b) SE = Standard deviation / √n
SE = 1,3 /10 SE = 0,1
We can support that with 99 % of probability our random variable will be in the CI.
Answer:
42.64
Step-by-step explanation:
Answer:
3
Step-by-step explanation:
(x₁ , y₁) = (-1 , -2) & (x₂ , y₂) = (3 , 10)
![Slope =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}](https://tex.z-dn.net/?f=Slope%20%3D%5Cfrac%7By_%7B2%7D-y_%7B1%7D%7D%7Bx_%7B2%7D-x_%7B1%7D%7D)
![= \frac{10-[-2]}{3-[-1]}\\\\=\frac{10+2}{3+1}\\\\=\frac{12}{4}\\\\=4](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B10-%5B-2%5D%7D%7B3-%5B-1%5D%7D%5C%5C%5C%5C%3D%5Cfrac%7B10%2B2%7D%7B3%2B1%7D%5C%5C%5C%5C%3D%5Cfrac%7B12%7D%7B4%7D%5C%5C%5C%5C%3D4)
m = 4
y - y₁ = m (x - x₁)
y - [-2] = 4(x - [-1])
y + 2 = 4(x + 1)
y + 2 = 4x + 4
y = 4x + 4 - 2
y = 4x + 2
Fractions,rats, and percents all interconnect. For ext,50%=11/2 =1:2
![x \times \frac{1}{3} = 2 \\ = > x = 2 \times 3 \\ = > x = 6](https://tex.z-dn.net/?f=x%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B3%7D%20%20%3D%202%20%5C%5C%20%20%3D%20%20%3E%20x%20%3D%202%20%5Ctimes%203%20%5C%5C%20%20%3D%20%20%3E%20x%20%3D%206)
![y - 2 = 9 \\ = > y = 9 + 2 = 11](https://tex.z-dn.net/?f=y%20-%202%20%3D%209%20%5C%5C%20%20%3D%20%20%3E%20y%20%3D%209%20%2B%202%20%3D%2011)
![(2s) \frac{1}{2} = 9 \\ = > s = 9](https://tex.z-dn.net/?f=%282s%29%20%5Cfrac%7B1%7D%7B2%7D%20%20%3D%209%20%5C%5C%20%20%3D%20%20%3E%20s%20%3D%209)
![2n - 1 = 16 \\ = > 2n = 16 + 1 \\ = > 2n = 17 \\ = > n = \frac{17}{2} = 8.5](https://tex.z-dn.net/?f=2n%20-%201%20%3D%2016%20%5C%5C%20%20%3D%20%20%3E%202n%20%3D%2016%20%2B%201%20%5C%5C%20%20%3D%20%20%3E%202n%20%3D%2017%20%5C%5C%20%20%3D%20%20%3E%20n%20%3D%20%20%5Cfrac%7B17%7D%7B2%7D%20%20%3D%208.5)
<h3>The answers are :</h3><h3>x = 6</h3><h3>y = 11</h3><h3>s = 9</h3><h3>n = 8.5</h3><h3>Hope it helps!</h3><h3 />