What is the intersection of the sets A=3, 4, 6 14, 19) and B= (1, 3 6, 8,14)?
2 answers:
Answer = <em>(3,6,14)</em>
Intersection of sets simply means to list down the numbers that appear in both sets
Answer: A∩B={3,6,14}
Solution:
A={3,4,6,14,19}
B={1,3,6,8,14}
The intersection between two sets is the set formed by the common elements. The common elements of the sets A and B are 3, 6, and 14, then:
A∩B={3,6,14}
You might be interested in
Answer:3
Step-by-step explanation:5674
Answer:

• let f(x) be m:

• make x the subject of the function:
![{ \rm{8m = {x}^{3} + 128}} \\ \\ { \rm{ {x}^{3} = 8m - 128 }} \\ \\ { \rm{ {x}^{3} = 8(m - 16) }} \\ \\ { \rm{x = \sqrt[3]{8} \times \sqrt[3]{(m - 16)} }} \\ \\ { \rm{x = 2 \sqrt[3]{(m - 16)} }}](https://tex.z-dn.net/?f=%7B%20%5Crm%7B8m%20%3D%20%20%7Bx%7D%5E%7B3%7D%20%20%2B%20128%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7B%20%7Bx%7D%5E%7B3%7D%20%3D%208m%20-%20128%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7B%20%7Bx%7D%5E%7B3%7D%20%3D%208%28m%20-%2016%29%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7Bx%20%3D%20%20%5Csqrt%5B3%5D%7B8%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%28m%20-%2016%29%7D%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7Bx%20%3D%202%20%5Csqrt%5B3%5D%7B%28m%20-%2016%29%7D%20%7D%7D)
• therefore:

Answer:
Step-by-step explanation:
Answer:
1)d
2)
6)b
7)d,c,b,a
8)a,b
−15.82x + 20.042
calculated it