1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horrorfan [7]
4 years ago
6

Answer to 42.7 -(-12.4)

Mathematics
1 answer:
Aleks [24]4 years ago
4 0
<span>42.7−<span>(<span>−12.4</span>)

</span></span><span>=<span>42.7−<span>(<span>−12.4</span>)

</span></span></span><span>=<span>42.7+12.4

</span></span><span>=<span>55.1</span></span>
You might be interested in
What are the three types of solutions possible when solving an inequality
True [87]
One solution
No Solution
Infinitely Many Solutions
3 0
3 years ago
I need help with this it's timed. i need this asap please
Neko [114]

Answer:

QPR and NMP (Last one)

Step-by-step explanation:

Visually you can see they are the same angle

4 0
3 years ago
What is the mean of this discrete random variable? That is, what is EP), the expected value of X? O A. 32.63 O B. 31.47 O C. 29.
kkurt [141]

According to this formula, we take each observed X value and multiply it by its respective probability. We then add these products to reach our expected value. You may have seen this before referred to as a weighted average. It is known as a weighted average because it takes into account the probability of each outcome and weighs it accordingly. This is in contrast to an unweighted average which would not take into account the probability of each outcome and weigh each possibility equally.

Let's look at a few examples of expected values for a discrete random variable:

Example

 

A fair six-sided die is tossed. You win $2 if the result is a “1,” you win $1 if the result is a “6,” but otherwise you lose $1.

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span></span>

The interpretation is that if you play many times, the average outcome is losing 17 cents per play. Thus, over time you should expect to lose money.

 

Example

 

Using the probability distribution for number of tattoos, let's find the mean number of tattoos per student.

<span>Probabilty Distribution for Number of Tattoos Each Student Has in a Population of Students<span><span>Tattoos01234</span><span>Probability.850.120.015.010.005</span></span></span>

<span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span></span>

The mean number of tattoos per student is .20.

 

Symbols for Population Parameters

Recall from Lesson 3, in a sample, the mean is symbolized by <span><span>x<span>¯¯¯</span></span><span>x¯</span></span> and the standard deviation by <span>ss</span>. Because the probabilities that we are working with here are computed using the population, they are symbolized using lower case Greek letters. The population mean is symbolized by <span>μμ</span> (lower case "mu") and the population standard deviation by <span>σσ</span>(lower case "sigma").

<span><span> Sample StatisticPopulation Parameter</span><span>Mean<span><span>x<span>¯¯¯</span></span><span>x¯</span></span><span>μμ</span></span><span>Variance<span><span>s2</span><span>s2</span></span><span><span>σ2</span><span>σ2</span></span></span><span>Standard Deviation<span>ss</span><span>σσ</span></span></span>

Also recall that the standard deviation is equal to the square root of the variance. Thus, <span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

Standard Deviation of a Discrete Random Variable

Knowing the expected value is not the only important characteristic one may want to know about a set of discrete numbers: one may also need to know the spread, or variability, of these data. For instance, you may "expect" to win $20 when playing a particular game (which appears good!), but the spread for this might be from losing $20 to winning $60. Knowing such information can influence you decision on whether to play.

To calculate the standard deviation we first must calculate the variance. From the variance, we take the square root and this provides us the standard deviation. Conceptually, the variance of a discrete random variable is the sum of the difference between each value and the mean times the probility of obtaining that value, as seen in the conceptual formulas below:

Conceptual Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span><span>−−−−−−−−−−−</span>√</span>]</span><span>σ=<span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span>]</span></span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

In these expressions we substitute our result for E(X) into <span>μμ</span> because <span>μμ</span> is the symbol used to represent the mean of a population .

However, there is an easier computational formula. The compuational formula will give you the same result as the conceptual formula above, but the calculations are simplier.

Computational Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span><span>σ2</span>=[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span>−−−−−−−−−−−−</span>√</span></span><span>σ=<span>[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span></span><span> 
</span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

Notice in the summation part of this equation that we only square each observed X value and not the respective probability. Also note that the <span>μμ</span> is outside of the summation.

Example

Going back to the first example used above for expectation involving the dice game, we would calculate the standard deviation for this discrete distribution by first calculating the variance:

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span><span>σ2</span>=[∑<span>x2i</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span><span><span>σ2</span>=[∑<span>xi2</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span></span>

<span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span></span>

The variance of this discrete random variable is 1.472.

<span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

<span><span>σ=<span>1.472<span>−−−−</span>√</span>=1.213</span><span>σ=1.472=1.213</span></span>

The standard deviation of this discrete random vairable is 1.213. hope this helps

7 0
4 years ago
Read 2 more answers
La tabla muestra la cuenta en el nuevo kit de cuentas de Jenny los seis amigos de Jenny tienten el mismo kit de cuentas cuántas
JulsSmile [24]

Answer:


Step-by-step explanation:

Yco7txtixcyv

5 0
3 years ago
A bag has 5 blue marbles, 1 pink marble and 2 red marbles. I draw a blue marble, put it back and draw again. What is the probabi
AysviL [449]

Answer:

B

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Mary takes a sightseeing tour on a helicopter that can fly 450 miles against a 35 mph headwind. In the same amount of time it ca
    13·1 answer
  • Karyose comes from a Greek word that means "kernel" and pro means "before." Based on this
    8·1 answer
  • The scale of a map is 1 centimeter to 25 kilometers. It is about 85 kilometers between two cities.
    8·1 answer
  • Georgia will use the pattern shown to make a square pyramid out of cardboard. The square pyramid will not have a bottom. How muc
    11·2 answers
  • A baseball team played 25 games and won 10 of them. What percent of the games did they win?
    9·1 answer
  • Can you help me match all of these :( please :(
    8·1 answer
  • Select all order pairs that satisfy the function y = -2x + 5
    11·1 answer
  • John runs the same amount each day (r). If he runs for 4 days this week write an expression to represent the amount he ran this
    8·2 answers
  • Exercise #5: Charlene heads out to school by foot on a fine spring day. Her distance from school, in blocks, is
    11·1 answer
  • Write each of the following expressions as a^n or a^n b^m,
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!