1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
3 years ago
10

PLEASE HELP ME! Find the cube roots of 125(cos 288° + i sin 288°).

Mathematics
1 answer:
shutvik [7]3 years ago
6 0
◆ COMPLEX NUMBERS ◆

125 ( cos 288 + i sin 288 )  can be written as -

125.e^i( 288) 
125.e^i( 288 +360 ) 
125.e^i( 288+ 720)

[ As , multiples of 360 can be added to an angle without changing any trigonometric functions or sign ]

To find the cube root , take the cube root of above 3 expressions ,

We get -
5 e^( i 96 ) 
5 e^( i 216 )  
5 e^( i 336 )

Now using Euler's formula , We rewrite above as -

5 ( cos 96 + i sin 96 ) 
5(c os 216 + i sin 216 ) 
5 ( cos 336 + i sin 336 ) Ans.
You might be interested in
What are the dimensions of a rectangular box with a volume of 50b 3 + 75b2 - 2b - 3?
Inessa [10]

Answer:

\large\boxed{(2b+3)\times(5b-1)\times(5b+1)}

Step-by-step explanation:

The formula of a volume of a rectangular box:

V=lwh

<em>l</em><em> - lenght</em>

<em>w</em><em> - width</em>

<em>h</em><em> - height</em>

V=50b^3+75b^2-2b-3=25b^2(2b+3)-1(2b+3)\\\\=(2b+3)(25b^2-1)=(2b+3)(5^2b^2-1^2)\\\\=(2b+3)\bigg((5b)^2-1^2\bigg)\qquad\text{use}\ a^2-b^2=(a-b)(a+b)\\\\=(2b+3)(5b-1)(5b+1)

Therefore the dinemsions of thisp prism are:

(2b+3)\times(5b-1)\times(5b+1)

5 0
3 years ago
Read 2 more answers
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Which of the following statements is false about most checking accounts?
lyudmila [28]
There is no picture for me to check
6 0
3 years ago
20 ounces to 25 ounces
Mariana [72]

Step-by-step explanation:

Percentage change is 25%

3 0
3 years ago
Find the value of x. Round to the nearest tenth
levacccp [35]

Answer:

70.5

Step-by-step explanation:

Refer to attached image

8 0
3 years ago
Other questions:
  • A ballroom is 60 ft long and 30 ft wide. Which of the following formulas is the correct formulas to determine the perimeter of t
    7·1 answer
  • What is 5/7 times 3/4
    12·2 answers
  • Help me please
    8·1 answer
  • Factor completely 2x2 − 6x − 36.
    13·1 answer
  • Points N, P, and R all lie on circle O. Arc PR measures 120°. How does the measure of angle RNQ relate to the measure of arc PR?
    15·2 answers
  • What is the solution to the linear equation d-10-2d+7=8+d-10-3d
    15·2 answers
  • Enzo drank 6 glasses of orange juice that contained total of 360 calories. What was the unit rate? (calories per glass)
    13·2 answers
  • Lara employed a residential cleaning service to tidy up her home. They charged her $150 for 3
    5·1 answer
  • The diagram shows a triangle.
    5·1 answer
  • Let f(x) = 3x + 5 and g(x) = x2.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!