Answer:
![f(x)=\sqrt[3]{x-4} , g(x)=6x^{2}\textrm{ or }f(x)=\sqrt[3]{x},g(x)=6x^{2} -4](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx-4%7D%20%2C%20g%28x%29%3D6x%5E%7B2%7D%5Ctextrm%7B%20or%20%7Df%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%2Cg%28x%29%3D6x%5E%7B2%7D%20-4)
Step-by-step explanation:
Given:
The function, ![H(x)=\sqrt[3]{6x^{2}-4}](https://tex.z-dn.net/?f=H%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D)
Solution 1:
Let ![f(x)=\sqrt[3]{x}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D)
If
, then,
![\sqrt[3]{g(x)} =\sqrt[3]{6x^{2}-4}\\g(x)=6x^{2}-4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bg%28x%29%7D%20%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5Cg%28x%29%3D6x%5E%7B2%7D-4)
Solution 2:
Let
. Then,
![f(g(x))=H(x)=\sqrt[3]{6x^{2}-4}\\\sqrt[3]{g(x)-4}=\sqrt[3]{6x^{2}-4} \\g(x)-4=6x^{2}-4\\g(x)=6x^{2}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3DH%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5C%5Csqrt%5B3%5D%7Bg%28x%29-4%7D%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%20%5C%5Cg%28x%29-4%3D6x%5E%7B2%7D-4%5C%5Cg%28x%29%3D6x%5E%7B2%7D)
Similarly, there can be many solutions.
9514 1404 393
Answer:
120
Step-by-step explanation:
The number of permutations of 5 things taken 4 at a time is 120.
__
There are 5 odd digits. You want to choose 4 of them, then arrange those 4 in all possible ways. There are 5·4·3·2 = 120 ways to do that.
120 4-digit codes can be formed using odd digits with no repetition.
Answer:
A. =4x3+9x2−25x+12
Step-by-step explanation:
(x+4)(4x−3)(x−1)
=((x+4)(4x−3))(x+−1)
=((x+4)(4x−3))(x)+((x+4)(4x−3))(−1)
=4x3+13x2−12x−4x2−13x+12
=4x3+9x2−25x+12
Answer:
The number is 9.5
Step-by-step explanation:
Look at the picture above, it explains everything
1 / (1/6) = x / (2/3)...1 drop to 1/6 dash = x drops to 2/3 dash
cross multiply
(1/6)(x) = (1)(2/3)
1/6x = 2/3
x = 2/3 * 6
x = 12/3 = 4 drops <==