1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mel-nik [20]
3 years ago
7

WILL GIVE BRAINIEST TO THE FIRST ANSWER NEED HELP ASAP

Mathematics
1 answer:
cestrela7 [59]3 years ago
5 0

Answer:

x=1

Step-by-step explanation:

\sqrt{3x-1}+\sqrt{5x-3}+\sqrt{x-1}=2\sqrt{2}

\sqrt{3x-1}+\sqrt{5x-3}+\sqrt{x-1}-\sqrt{x-1}=2\sqrt{2}-\sqrt{x-1}

\sqrt{3x-1}+\sqrt{5x-3}=2\sqrt{2}-\sqrt{x-1}

Squaring on both sides we get

\left(\sqrt{3x-1}+\sqrt{5x-3}\right)^2=\left(2\sqrt{2}-\sqrt{x-1}\right)^2 -----(A)

Expanding Left hand side we get

\left(\sqrt{3x-1}+\sqrt{5x-3}\right)^2=\left(2\sqrt{2}-\sqrt{x-1}\right)^2

 =\left(\sqrt{3x-1}\right)^2+2\sqrt{3x-1}\sqrt{5x-3}+\left(\sqrt{5x-3}\right)^2

 =\left(3x-1\right)+2\sqrt{3x-1}\sqrt{5x-3}+\left(5x-3\right)

 =8x+2\sqrt{3x-1}\sqrt{5x-3}-4

Expanding Right Hand side

\left(2\sqrt{2}-\sqrt{x-1}\right)^2

  = \left(2\sqrt{2}\right)^2-2\cdot \:2\sqrt{2}\sqrt{x-1}+\left(\sqrt{x-1}\right)^2

 = 8-4\sqrt{2}\sqrt{x-1}+\left(x-1\right)

 = x+7-4\sqrt{2}\sqrt{x-1}

Hence we have now (A) equal to

8x+2\sqrt{3x-1}\sqrt{5x-3}-4=x+7-4\sqrt{2}\sqrt{x-1}

subtracting 8x from both sides

8x+2\sqrt{3x-1}\sqrt{5x-3}-4-8x=x+7-4\sqrt{2}\sqrt{x-1}-8x

2\sqrt{3x-1}\sqrt{5x-3}-4=-7x-4\sqrt{2}\sqrt{x-1}+7

Adding 4 on both sides we get...

2\sqrt{3x-1}\sqrt{5x-3}-4+4=-7x-4\sqrt{2}\sqrt{x-1}+7+4

2\sqrt{3x-1}\sqrt{5x-3}=-7x+11-4\sqrt{2}\sqrt{x-1}

now squaring on both sides again

\left(2\sqrt{3x-1}\sqrt{5x-3}\right)^2=\left(-7x+11-4\sqrt{2}\sqrt{x-1}\right)^2

                                                                   ----------(B)

Left hand side:

\left(2\sqrt{3x-1}\sqrt{5x-3}\right)^2

  = 4\left(3x-1\right)\left(5x-3\right)

  = 60x^2-56x+12

Right hand side:

\left(-7x+11-4\sqrt{2}\sqrt{x-1}\right)^2

  = \left(-7x+11-4\sqrt{2}\sqrt{x-1}\right)\left(-7x+11-4\sqrt{2}\sqrt{x-1}\right)

  = 49x^2-154x+56\sqrt{2}\sqrt{x-1}x+121-88\sqrt{2}\sqrt{x-1}+32\left(x-1\right)

  = 49x^2+56\sqrt{2}x\sqrt{x-1}-122x-88\sqrt{2}\sqrt{x-1}+89

Hence we have (B) equals to

60x^2-56x+12=49x^2+56\sqrt{2}x\sqrt{x-1}-122x-88\sqrt{2}\sqrt{x-1}+89

49x^2+56\sqrt{2}x\sqrt{x-1}-122x-88\sqrt{2}\sqrt{x-1}+89=60x^2-56x+12

Subtract 49x^2-122x from both sides

56\sqrt{2}x\sqrt{x-1}-88\sqrt{2}\sqrt{x-1}+89=11x^2+66x+12

56\sqrt{2}x\sqrt{x-1}-88\sqrt{2}\sqrt{x-1}=11x^2+66x-77  ---(C)

Also

56\sqrt{2}x\sqrt{x-1}-88\sqrt{2}\sqrt{x-1}

 = 7\cdot \:8\sqrt{x-1}\sqrt{2}x-11\cdot \:8\sqrt{x-1}\sqrt{2}

 = 8\sqrt{x-1}\sqrt{2}\left(7x-11\right)

Hence (C) becomes

8\sqrt{2}\sqrt{x-1}\left(7x-11\right)=11x^2+66x-77

Squaring both sides

\left(8\sqrt{2}\sqrt{x-1}\left(7x-11\right)\right)^2=\left(11x^2+66x-77\right)^2

                                      -------(D)

Left Hand Side

= 6272\left(x-1\right)x^2-19712\left(x-1\right)x+15488\left(x-1\right)

=  6272x^3-25984x^2+35200x-15488

Right hand Side

= \left(11x^2+66x-77\right)\left(11x^2+66x-77\right)

=  121x^4+1452x^3+2662x^2-10164x+5929

Hence (D) becomes

6272x^3-25984x^2+35200x-15488=121x^4+1452x^3+2662x^2-10164x+5929

121x^4+1452x^3+2662x^2-10164x+5929=6272x^3-25984x^2+35200x-15488

subtracting 6272x^3-25984x^2+35200x-15488 from both sides

121x^4-4820x^3+28646x^2-45364x+21417=0 -----(E)

Solving using factoring and trying for all the possible rational roots starting from x=1 , we get it satisfies at x=1 itself. Hence (x-1) is one of the factor

Hence (E) becomes

(x-1)(121x^3-4699x^2+23947x-21417)=0

(121x^3-4699x^2+23947x-21417)=\left(x-33\right)\left(121x^2-706x+649\right)

(E)= becomes

\left(x-1\right)\left(x-33\right)\left(121x^2-706x+649\right)=0

hence x =1 or x=33

the third factor and not be factorized

Checking our solution for x=1

\sqrt{3\cdot \:1-1}+\sqrt{5\cdot \:1-3}+\sqrt{1-1}=2\sqrt{2}

2\sqrt{2}=2\sqrt{2}

hence true

Checking our solution for x=33

\sqrt{3\cdot \:33-1}+\sqrt{5\cdot \:33-3}+\sqrt{33-1}=2\sqrt{2}

20\sqrt{2}=2\sqrt{2}

False

hence our answer is

x=1

You might be interested in
22.94 timers 10 to the second power equals this is real hard I will let you have 15 points!!!
marta [7]
10 to the second power is 100.
22.94 times 100 = 2294
The answer is 2294

Hope I helped :)
6 0
4 years ago
Solve (−5) • (−3). (1 point)<br><br> a<br> −15<br><br> b<br> −8<br><br> c<br> 8<br><br> d<br> 15
Sati [7]

Answer:

a 15

Step-by-step explanation:

two negitive numbers equal a positive number :) ur welcomee

3 0
3 years ago
Need help ASAP
Tresset [83]

Answer:

upper left

Step-by-step explanation:

The generic equation for a circle centered at (h, k) with radius r is ...

(x -h)^2 +(y -k)^2 = r^2

Comparing that equation to the one you have, you can see that ...

-h = 0

-k = +3

r^2 = 9

Then you have (h, k) = (0, -3) and a radius of 3.

The circle has its center on the y-axis 3 units below the x-axis and just touches the x-axis. This is a description of the graph at upper left.

4 0
3 years ago
Factor this polynomial expression.
Zanzabum

Answer:

B) 2(x+3)(x+3)

Step-by-step explanation:

4 0
3 years ago
A moving company’s moving rates can be represented by the function f(x) = 3x 400, where x is the number of miles for the move. a
goldenfox [79]

The function that represents the difference between the moving companies' rates is:

h(x) = -2x + 200.

<h3>How to find the difference of two functions?</h3>

The difference of two functions is found subtracting the like terms from the functions.

In this problem, the functions for the rates are given as follows:

  • f(x) = 3x + 400.
  • g(x) = 5x + 200

Hence the difference is given by:

h(x) = 3x + 400 - (5x + 200) = 3x - 5x + 400 - 200 = -2x + 200.

More can be learned about functions at brainly.com/question/24808124

#SPJ1

7 0
2 years ago
Other questions:
  • which of the following describes how to translate the graph y = |x| to obtain the graph of y = |x-1| -1​
    7·2 answers
  • Convert 16/5 to a decimal using long division PLEASE HELP TY!!&lt;3
    14·2 answers
  • PAPERWEIGHT Marta bought a paperweight in the shape of a cone. The radius was 10 centimeters and the height 9 centimeters. Find
    7·1 answer
  • a cone has a circular base with a diameter of 18in the height of a cone is 40in what is the approximate lateral area of a cone u
    7·1 answer
  • There are 560 students at Smith Middle School, 45% of them are in athletics. How many students are in athletics?
    8·2 answers
  • (12 + 5) + 32 × (10 − 5)
    7·1 answer
  • Identify a, b and c in the quadratic equation.<br><br> -x2 + 31x + 7 = 0
    12·1 answer
  • What times what equals 262.21 <br> i need help
    13·1 answer
  • A furniture maker used 2/3 of a can of paint to paint some chairs. He used 1/6 of a can of paint for each chair. How many chairs
    14·1 answer
  • Help?! I feel so unmotivated unfortunately
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!