Answer:
6 possible integers
Step-by-step explanation:
Given
A decreasing geometric sequence
![Ratio = \frac{m}{7}](https://tex.z-dn.net/?f=Ratio%20%3D%20%5Cfrac%7Bm%7D%7B7%7D)
Required
Determine the possible integer values of m
Assume the first term of the sequence to be positive integer x;
The next sequence will be ![x * \frac{m}{7}](https://tex.z-dn.net/?f=x%20%2A%20%20%5Cfrac%7Bm%7D%7B7%7D)
The next will be; ![x * (\frac{m}{7})^2](https://tex.z-dn.net/?f=x%20%2A%20%20%28%5Cfrac%7Bm%7D%7B7%7D%29%5E2)
The nth term will be ![x * (\frac{m}{7})^{n-1}](https://tex.z-dn.net/?f=x%20%2A%20%20%28%5Cfrac%7Bm%7D%7B7%7D%29%5E%7Bn-1%7D)
For each of the successive terms to be less than the previous term;
then
must be a proper fraction;
This implies that:
![0 < m < 7](https://tex.z-dn.net/?f=0%20%3C%20m%20%3C%207)
<em>Where 7 is the denominator</em>
<em>The sets of </em>
<em> is </em>
<em> and their are 6 items in this set</em>
<em>Hence, there are 6 possible integer</em>
Answer:Top Left
Step-by-step explanation:
Answer:
-1.15
Step-by-step explanation:
Subtract 0.4 from −
0.75
.
Answer:
A(t) = 300 -260e^(-t/50)
Step-by-step explanation:
The rate of change of A(t) is ...
A'(t) = 6 -6/300·A(t)
Rewriting, we have ...
A'(t) +(1/50)A(t) = 6
This has solution ...
A(t) = p + qe^-(t/50)
We need to find the values of p and q. Using the differential equation, we ahve ...
A'(t) = -q/50e^-(t/50) = 6 - (p +qe^-(t/50))/50
0 = 6 -p/50
p = 300
From the initial condition, ...
A(0) = 300 +q = 40
q = -260
So, the complete solution is ...
A(t) = 300 -260e^(-t/50)
___
The salt in the tank increases in exponentially decaying fashion from 40 grams to 300 grams with a time constant of 50 minutes.
http://www.stgeorges.co.uk/blog/how-can-i-describe-a-graph-ielts-writing-task-part-1-business-english