Answer:
below
Step-by-step explanation:
1) slope = rise / run
2 coordinates are (-4, 0), (0, 2).
2 - 0 = 2
0 -- 4 = 4
2 / 4 = 1/2 so the slope is 0.5 or ½
2) it crosses the y axis at the average of the origin and 4.
4 + 0 = 4 / 2 = 2 so y intercept is 2.
3) in y= mx + b form
f(x) = ½x + 2, or, f(x) = 0.5x + 2
The required proof is given in the table below:
![\begin{tabular}{|p{4cm}|p{6cm}|} Statement & Reason \\ [1ex] 1. $\overline{BD}$ bisects $\angle ABC$ & 1. Given \\ 2. \angle DBC\cong\angle ABD & 2. De(finition of angle bisector \\ 3. $\overline{AE}$||$\overline{BD}$ & 3. Given \\ 4. \angle AEB\cong\angle DBC & 4. Corresponding angles \\ 5. \angle AEB\cong\angle ABD & 5. Transitive property of equality \\ 6. \angle ABD\cong\angle BAE & 6. Alternate angles \end{tabular}](https://tex.z-dn.net/?f=%20%5Cbegin%7Btabular%7D%7B%7Cp%7B4cm%7D%7Cp%7B6cm%7D%7C%7D%20%0A%20Statement%20%26%20Reason%20%5C%5C%20%5B1ex%5D%20%0A1.%20%24%5Coverline%7BBD%7D%24%20bisects%20%24%5Cangle%20ABC%24%20%26%201.%20Given%20%5C%5C%0A2.%20%5Cangle%20DBC%5Ccong%5Cangle%20ABD%20%26%202.%20De%28finition%20of%20angle%20bisector%20%5C%5C%20%0A3.%20%24%5Coverline%7BAE%7D%24%7C%7C%24%5Coverline%7BBD%7D%24%20%26%203.%20Given%20%5C%5C%20%0A4.%20%5Cangle%20AEB%5Ccong%5Cangle%20DBC%20%26%204.%20Corresponding%20angles%20%5C%5C%0A5.%20%5Cangle%20AEB%5Ccong%5Cangle%20ABD%20%26%205.%20Transitive%20property%20of%20equality%20%5C%5C%20%0A6.%20%5Cangle%20ABD%5Ccong%5Cangle%20BAE%20%26%206.%20Alternate%20angles%0A%5Cend%7Btabular%7D)
Answer:
67.5 - 67.5 - 45 °
Step-by-step explanation:
Sum of INTERIOR angles of a polygon
(n-2) * 180 <====<u>ya just have to remember/know this !</u>
n is the number of sides n = 8 in this case
(8-2)*180 = 1080 ° < === this is the SUM of the 8 interior angles
EACH interior angle is then 1080 / 8 = 135 °
you can see from the picture that each of the two outside angles of the green triangle are 1/2 of this = 67.5° each
so the triangle measurements are
67.5 - 67.5 - 45 ( they have to sum to 180 for triangle)