
we know all it's doing is adding 6 over again to each term to get the next one, so then

now for the explicit one
![\bf n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference}\\[-0.5em] \hrulefill\\ a_1=7\\ d=6 \end{cases} \\\\\\ a_n=7+(n-1)6\implies a_n=7+6n-6\implies \stackrel{\textit{Explicit Formula}}{\stackrel{f(n)}{a_n}=6n+1} \\\\\\ therefore\qquad \qquad f(10)=6(10)+1\implies f(10)=61](https://tex.z-dn.net/?f=%5Cbf%20n%5E%7Bth%7D%5Ctextit%7B%20term%20of%20an%20arithmetic%20sequence%7D%20%5C%5C%5C%5C%20a_n%3Da_1%2B%28n-1%29d%5Cqquad%20%5Cbegin%7Bcases%7D%20n%3Dn%5E%7Bth%7D%5C%20term%5C%5C%20a_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5C%20d%3D%5Ctextit%7Bcommon%20difference%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a_1%3D7%5C%5C%20d%3D6%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20a_n%3D7%2B%28n-1%296%5Cimplies%20a_n%3D7%2B6n-6%5Cimplies%20%5Cstackrel%7B%5Ctextit%7BExplicit%20Formula%7D%7D%7B%5Cstackrel%7Bf%28n%29%7D%7Ba_n%7D%3D6n%2B1%7D%20%5C%5C%5C%5C%5C%5C%20therefore%5Cqquad%20%5Cqquad%20f%2810%29%3D6%2810%29%2B1%5Cimplies%20f%2810%29%3D61)





Consider a
ABC right angled at C and
Then,
‣ Base [B] = BC
‣ Perpendicular [P] = AC
‣ Hypotenuse [H] = AB

Let,
Base = 7k and Perpendicular = 8k, where k is any positive integer
In
ABC, H² = B² + P² by Pythagoras theorem






Calculating Sin




Calculating Cos




<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

Putting,
• Sin
= 
• Cos
= 

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>










✧ Basic Formulas of Trigonometry is given by :-


✧ Figure in attachment

Answer:
The number of ways is 26,400 ways
Step-by-step explanation:
Given;
total number of men, M = 10
total number of women, W = 12
number of committees to be formed = 6
If there must be equal gender, then it must consist of 3 men and 3 women.

Therefore, the number of ways is 26,400 ways
Answer:
A.the product of X and a factor not depending on X.
Answer:

Step-by-step explanation:
Let w be weight of emu egg in pounds.
We have been given that an ostrich egg weighs 2.9 pounds.The difference between the weight of this egg and the weight of an emu egg is 1.6 pounds.
We can represent this information as:

Therefore, the equation
will give us the weight of the emu egg, w, in pounds.