Inverse Variation is shown through the formula y=k/x
plug in the given values and solve for k: 3=k/5 so k=15
Answer: y=15/x
Answer:
B
Step-by-step explanation:
Answer: 132
Step-by-step explanation:
Answer:
Step-by-step explanation:
5x + 13y = 232
12x + 7y = 218
For each choice:
a) The first equation can be multiplied by –13 and the second equation by 7 to eliminate y. So we have
- 65x - 169y = - 3016
84x + 49y = 1526
Can not eliminate x and y.
b) The first equation can be multiplied by 7 and the second equation by 13 to eliminate y. So we have
35x + 91 y = 1624
156x + 91y = 2834
Can not eliminate x and y if we ADD.
<em>(If we subtract, this is Yes)</em>
<em></em>
c) The first equation can be multiplied by –12 and the second equation by 5 to eliminate x.
-60x - 156y = - 2784
60x + 35y = 1090
The answer is YES
d) The first equation can be multiplied by 5 and the second equation by 12 to eliminate x.
25x + 65y = 1160
144x + 84y = 2616
Can not eliminate x and y
The final answer is C
Select all the correct answers:
1) Yes
2) No
x=8→h(8)=2(8)^2+5(8)+2=2(64)+40+2=128+40+2→h(8)=170
x=8→f(8)=3^8+2=6,561+2→f(8)=5,563>170=h(8)
3) Yes
4) No
5) Yes
rg=[g(3)-g(2)]/(3-2)=[g(3)-g(2)]/1→rg=g(3)-g(2)
g(3)=20(3)+4=60+4→g(3)=64
g(2)=20(2)+4=40+4→g(2)=44
rg=64-44→rg=20
rf=f(3)-f(2)
f(3)=3^3+2=27+2→f(3)=29
f(2)=3^2+2=9+2→f(2)=11
rf=29-11→rf=18
rh=h(3)-h(2)
h(3)=2(3)^2+5(3)+2=2(9)+15+2=18+15+2→h(3)=35
h(2)=2(2)^2+5(2)+2=2(4)+10+2=8+10+2→h(2)=20
rh=35-20→rh=15
rg=20>18=rf
rg=20>15=rh
6) No
x=4→g(4)=20(4)+4=80+4→g(4)=84
x=4→h(4)=2(4)^2+5(4)+2=2(16)+20+2=32+20+2→h(4)=54
x=4→f(4)=3^4+2=81+2→f(4)=83>54=h(4)
f(4)=83<84=g(4)