Answer:
(x, y) = (-1, 1)
Step-by-step explanation:
8x + y = −7
for y = 1
8x + 1 = -7
subtract 1 from boh sides
8x = -8
divide bot sides by 8
x = -1
(x, y) = (-1, 1)
Answer:
So about 95 percent of the observations lie between 480 and 520.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviations of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
The mean is 500 and the standard deviation is 10.
About 95 percent of the observations lie between what two values?
From the Empirical Rule, this is from 500 - 2*10 = 480 to 500 + 2*10 = 520.
So about 95 percent of the observations lie between 480 and 520.
The standard form for the equation of a circle is :
<span><span><span> (x−h)^</span>2</span>+<span><span>(y−k)^</span>2</span>=<span>r2</span></span><span> ----------- EQ(1)
</span><span> where </span><span>handk</span><span> are the </span><span>x and y</span><span> coordinates of the center of the circle and </span>r<span> is the radius.
</span> The center of the circle is the midpoint of the diameter.
So the midpoint of the diameter with endpoints at (−10,1)and(−8,5) is :
((−10+(−8))/2,(1+5)/2)=(−9,3)
So the point (−9,3) is the center of the circle.
Now, use the distance formula to find the radius of the circle:
r^2=(−10−(−9))^2+(1−3)^2=1+4=5
⇒r=√5
Subtituting h=−9, k=3 and r=√5 into EQ(1) gives :
(x+9)^2+(y−3)^2=5
0 = 0
The input is an identity: it is true for all values