If tan 0= -(3)/(8), which expression is equivalent to cot 0 ?
2 answers:
Tan x = sin x / cos x
cot x = cos x/ sin x
We can see that tan and cot are reciprocal.
So, if tan(O) = -(3)/(8), then cot(O) = - (8)/3.
<h2>
Answer:</h2>
Hence, the answer is:
or ![\cot 0=\dfrac{-8}{3}](https://tex.z-dn.net/?f=%5Ccot%200%3D%5Cdfrac%7B-8%7D%7B3%7D)
<h2>
Step-by-step explanation:</h2>
We know that the tangent trignometric function and the cotangent trignometric function is given by:
![\tan x=\dfrac{1}{\cot x}](https://tex.z-dn.net/?f=%5Ctan%20x%3D%5Cdfrac%7B1%7D%7B%5Ccot%20x%7D)
i.e. the tangent function and the cotangent function are inverse of each other.
We are given tangent of an angle O as:
![\tan 0=\dfrac{-3}{8}](https://tex.z-dn.net/?f=%5Ctan%200%3D%5Cdfrac%7B-3%7D%7B8%7D)
Hence, we have:
![\cot O=\dfrac{1}{\tan O}\\\\i.e.\\\\\cot O=\dfrac{1}{\dfrac{-3}{8}}\\\\i.e.\\\\\cot O=\dfrac{8}{-3}\\\\i.e.\\\\\cot 0=\dfrac{-8}{3}](https://tex.z-dn.net/?f=%5Ccot%20O%3D%5Cdfrac%7B1%7D%7B%5Ctan%20O%7D%5C%5C%5C%5Ci.e.%5C%5C%5C%5C%5Ccot%20O%3D%5Cdfrac%7B1%7D%7B%5Cdfrac%7B-3%7D%7B8%7D%7D%5C%5C%5C%5Ci.e.%5C%5C%5C%5C%5Ccot%20O%3D%5Cdfrac%7B8%7D%7B-3%7D%5C%5C%5C%5Ci.e.%5C%5C%5C%5C%5Ccot%200%3D%5Cdfrac%7B-8%7D%7B3%7D)
You might be interested in
Answer:
What is the question?
Step-by-step explanation:
![P(8)=\dfrac{8\cdot(8+1)\cdot(2\cdot8+1)}{6}=\dfrac{8\cdot9\cdot17}{6}=\dfrac{1224}{6}=\boxed{204}](https://tex.z-dn.net/?f=P%288%29%3D%5Cdfrac%7B8%5Ccdot%288%2B1%29%5Ccdot%282%5Ccdot8%2B1%29%7D%7B6%7D%3D%5Cdfrac%7B8%5Ccdot9%5Ccdot17%7D%7B6%7D%3D%5Cdfrac%7B1224%7D%7B6%7D%3D%5Cboxed%7B204%7D)
Answer A.
Is this multiple problems..?
Answer: (5,25)
Step-by-step explanation: Use the formula x = -b/2a to find the maximum and minimum
X is less than or equal to 8