The one I think is the snake because it does not have 4 legs.
<h2><u>
Heart and lungs:</u></h2>
The upper chamber of the heart is called atrium and lower chamber of the heart is called ventricles.
The blood circulation in the heart is basically under the functioning of three blood vessels namely:
<h3><u>Arteries:
</u></h3>
- They start with the aorta, the huge vein leaving the heart.
- Veins divert oxygen-rich blood from the heart to the majority of the body's tissues.
- They branch a few times, decreasing and littler as they convey blood more remote from the heart.
<h3><u>Capillaries:
</u></h3>
- These are little; flimsy blood vessels that associate the arteries and the veins.
- Their dainty dividers permit oxygen, supplements, carbon dioxide, and other waste items to go to and from our organ's cells.
<h3><u>Veins:
</u></h3>
- These are the blood vessels that return blood to the heart; this blood needs (oxygen-poor) and is wealthy in waste items that are to be discharged or expelled from the body.
- Veins become bigger and bigger as they draw nearer to the heart.
- The unrivaled vena cava is the huge vein that brings blood from the head and arms to the heart, and the second rate vena cava brings blood from the mid-region and legs into the heart.
By starch, I'm assuming you mean glycogen, or animal starch.
Similarities:
Both are polysaccharide molecules made from glucose molecules linked together in a long chain.
Both are storehouses of energy.
Differences:
Glycogen is made in animal cells and is the only form of starch animals can digest (unless they have certain microbes in their intestinal tracts to break down cellulose, which all herbivores need).
Cellulose is made in plant cells.
The bonds are a bit different; the molecules are isomers. Glycogen bonds with what is called an alpha 1,4 bond, meaning that the first carbon of one glucose molecule is bonded to the 4th carbon of the next glucose molecule, but in a way that puts the bonds in a shape that falls below the plane of the molecule, and allows branching.
Cellulose bonds with beta 1,4 bonds. The first and fourth carbons of adjoining glucose molecules are still connected, but the shape of the bond falls above the plane of the molecule and does not branch.
Since enzymes are specific to their substrates, the enzymes shaped to fit glycogen bonds do not fit on cellulose bonds, which is why animals cannot digest cellulose on their own. In herbivores, there are microbes in their digestive tracts which can produce enzymes to break these bonds so the glucose can be used. In carnivores and omnivores like humans, there is no enzyme to break down cellulose so it becomes 'roughage' in our diets. It passes through the digestive tract without being broken down.
This is true because electricity can be conducted throe metal not menials like plastic and rubber hope it helps
Answer:
nucleotides
The DNA molecule is a polymer of nucleotides. Each nucleotide is composed of a nitrogenous base, a five-carbon sugar (deoxyribose), and a phosphate group.
Explanation: