1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
12

Based only on the information given in the diagram, which congruence theorems

Mathematics
2 answers:
lisabon 2012 [21]3 years ago
8 0

Answer: ASA, LA, LL, and SAS

Step-by-step explanation:

Finger [1]3 years ago
3 0

Answer:  A) SAS  and   B) ASA  and   (D) LA

<u>Step-by-step explanation:</u>

A) AC = XZ  Sides are congruent

   ∠C = ∠Z   Angles are congruent

   BC = YZ  <u> Sides are congruent   </u>

                  Side-Angle-Side

B) ∠A = ∠X   Angles are congruent

    AC = XZ   Sides are congruent

   ∠C = ∠Z   <u>Angles are congruent  </u>

                  Angle-Side-Angle

C) AB = XY is not given. We can use Pythagorean Theorem to discover that they are the same but since it is not given we cannot use Side-Side-Side.

D) AC = XZ   Legs are congruent

    ∠A = ∠X   <u>acute Angles are congruent  </u>

                     Leg-Angle

You might be interested in
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
Are the ratios 1:2 and 10:20 equivalent <br><br><br>YES OR NO​
nignag [31]

Answer:

yes

Step-by-step explanation:

10:20=

5 times 2= 10

5 times 4= 20

2:4=

1 times 2=2

2 times 2= 4

1:2

6 0
3 years ago
Read 2 more answers
At the bank, Derek made 7 withdrawals, each in the same amount. His brother, John, made 5 withdrawals, each in the same amount.
lozanna [386]

Answer:

x=12.50

y = 17.50

Step-by-step explanation:

x = Amount of one Derek withdrawal

then amount of John withdrawal =x+5

Total withdrawals of Derek = no of times x one time withdrawal

= 7(x) = 7x ... i

No of John withdrawal = no of times x one time withdrawal

= 5(x+5)  ... ii

Given that i and ii are equal

i.e. 7x =5(x+5)

7x = 5x+25

2x =25

x = 12.50 dollars

Y = 17.50 dollars

Checking part:

total derek withdrawal = 7(12.5) =87.50

Joh's withdrawal = 5(17.50) = 87.50

Since both are equal, our answers are right.

Solution:  Derek withdrew each time 12.50 dollars each for 7 times and John withdrew 17.50 dollars each for 5 times.

8 0
4 years ago
Which of the following could be the first step in solving this problem? 9(12-3)+4
Thepotemich [5.8K]
Using P.E.M.D.A.S. ( parentheses exponent multiply divide add subtract ) you would multiply the nine into the parentheses
8 0
3 years ago
A circle is shown. Triangle J K I have points on the circle. Angle J K I is 70 degrees. The measure of arc K I is 116 degrees.
photoshop1234 [79]

Answer:

Arc JK= 104

Angle KIJ= 52

7 0
3 years ago
Read 2 more answers
Other questions:
  • I need to see how to work this problem 6-(-7)=
    8·2 answers
  • A ladder is placed 7 feet from the base of a building and reaches a point on the building that is 24 feet above the ground.Find
    10·1 answer
  • the line plot shows the ages at which a group of musicians started to play an instrument based on the line plot which statement
    14·1 answer
  • What is the answer to this question <br> x + x + y x y (the last x is a times sign)
    11·1 answer
  • 2000 people are selected randomly from a certain population and it is found that 389 people in the sample are over 6 feet tall.
    6·1 answer
  • I need help with intercepts from a graph
    12·1 answer
  • Which describes Myra's distance as time increases?
    5·2 answers
  • Is it possible to use substitution to solve a system of linear equations if one equation represents a horizontal line and the ot
    10·1 answer
  • Divide: 464 : 46<br> Help me
    14·1 answer
  • See image for question. Please show workings.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!