Answer:
Electron transfer to from cytochrome c to molecular Oxygen in the process of oxidative phosphorylation
Explanation:
Cytochrome c is a protein which is involved in the electron transport chain for the production of ATP molecules during then process of respiration. It a soluble protein found in the intermembrane space of the mitochondria. It receives electrons from ubiquinone at Complex III of the electron transport chain and transfers this electron to molecular oxygen through its interaction with complex IV or cytochrome c oxidase, reducing molecular oxygen to water.
If the interaction of cytochrome c with cytochrome c oxidase is inhibited, the process of elctron transfer to oxygen will be inhibited and, so ATP synthesis will cease.
Ultimately, respiration will be inhibited resulting in death of the organism. For example, cyanide inhibits cytochrome c oxidase resulting in death of the organism poisoned with cyanide.
Laboratory technician,research associate,laboratory manager,research scientist, lead scientist and-principal investigator
Genetic
since we are made from our dna
Detective= they uncover mysteries and understand how things happen by sampling blood and looking for clues
Answer:
Dissociation of actin subunits occurs.
Explanation:
When we add phalloidin to a solution containing G-actin, the phalloidin binds to actin filaments more tightly as compared to actin monomers which leads to a decrease in the constant rate of dissociation of actin subunits from the ends of the filament. This dissociation stabilizes the actin filaments through the prevention of filament depolymerization. So we can conclude that addition of phalloidin to actin leads to stabilizing of actin filaments.