First, multiply the top equation by 2 and bottom by -3.
60x+60y=900
-60x-75y=-1035
————————
-15y=-135
—————-
-15=-15
y=9
So the answer should be 9.
The Answer is C, my good friend.
Some basic formulas involving triangles
\ a^2 = b^2 + c^2 - 2bc \textrm{ cos } \alphaa 2 =b 2+2 + c 2
−2bc cos α
\ b^2 = a^2 + c^2 - 2ac \textrm{ cos } \betab 2=
m_b^2 = \frac{1}{4}( 2a^2 + 2c^2 - b^2 )m b2 = 41(2a 2 + 2c 2-b 2)
b
Bisector formulas
\ \frac{a}{b} = \frac{m}{n} ba =nm
\ l^2 = ab - mnl 2=ab-mm
A = \frac{1}{2}a\cdot b = \frac{1}{2}c\cdot hA=
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)
\iits whatever A = prA=pr with r we denote the radius of the triangle inscribed circle
\ A = \frac{abc}{4R}A=
4R
abc
- R is the radius of the prescribed circle
\ A = \sqrt{p(p - a)(p - b)(p - c)}A=
p(p−a)(p−b)(p−c)
Annually The amount after 10 years = $ 7247.295
quarterly compound after 10 years = $7393.5
Continuously interest =$7,419
Given:
P = the principal amount
r = rate of interest
t = time in years
n = number of times the amount is compounding.
Principal = $4500
time= 10 year
Rate = 5%
To find: The amount after 10 years.
The principal amount is, P = $4500
The rate of interest is, r = 5% =5/100 = 0.05.
The time in years is, t = 10.
Using the quarterly compound interest formula:
A = P (1 + r / 4)4 t
A= 4500(1+.05/4)40
A= 4500(4.05/4)40
A= 4500(1.643)
Answer: The amount after 10 years = $7393.5
Using the Annually compound interest formula:
A = P (1 + r / 100) t
A= 4500(1+5/100)10
A= 4500(105/100)10
Answer: The amount after 10 years = $ 7247.295
Using the Continuously compound interest formula:
e stands for Napier’s number, which is approximately 2.7183
A= $2,919
Answer: The amount after 10 years = $4500+$2,919=$7,419
More details :brainly.com/question/13307568
#SPJ9