1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
3 years ago
10

Solving equations (algebra). Thank you!

Mathematics
1 answer:
LenKa [72]3 years ago
5 0

Answer:

\large\boxed{\dfrac{1}{x^2}+x^2=23}

Step-by-step explanation:

\left(\dfrac{1}{x}+x\right)^2=25\qquad\text{use}\ (a+b)^2=a^2+2ab+b^2\\\\\left(\dfrac{1}{x}\right)^2+2(x\!\!\!\!\diagup)\left(\dfrac{1}{x\!\!\!\!\diagup}\right)+x^2=25\\\\\dfrac{1}{x^2}+2+x^2=25\qquad\text{subtract 2 from both sides}\\\\\dfrac{1}{x^2}+x^2=23

You might be interested in
A mass weighing 16 pounds stretches a spring (8/3) feet. The mass is initially released from rest from a point 2 feet below the
mezya [45]

Answer with Step-by-step explanation:

Let a mass weighing 16 pounds stretches a spring \frac{8}{3} feet.

Mass=m=\frac{W}{g}

Mass=m=\frac{16}{32}

g=32 ft/s^2

Mass,m=\frac{1}{2} Slug

By hook's law

w=kx

16=\frac{8}{3} k

k=\frac{16\times 3}{8}=6 lb/ft

f(t)=10cos(3t)

A damping force is numerically equal to 1/2 the instantaneous velocity

\beta=\frac{1}{2}

Equation of motion :

m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}+f(t)

Using this equation

\frac{1}{2}\frac{d^2x}{dt^2}=-6x-\frac{1}{2}\frac{dx}{dt}+10cos(3t)

\frac{1}{2}\frac{d^2x}{dt^2}+\frac{1}{2}\frac{dx}{dt}+6x=10cos(3t)

\frac{d^2x}{dt^2}+\frac{dx}{dt}+12x=20cos(3t)

Auxillary equation

m^2+m+12=0

m=\frac{-1\pm\sqrt{1-4(1)(12)}}{2}

m=\frac{-1\pmi\sqrt{47}}{2}

m_1=\frac{-1+i\sqrt{47}}{2}

m_2=\frac{-1-i\sqrt{47}}{2}

Complementary function

e^{\frac{-t}{2}}(c_1cos\frac{\sqrt{47}}{2}+c_2sin\frac{\sqrt{47}}{2})

To find the particular solution using undetermined coefficient method

x_p(t)=Acos(3t)+Bsin(3t)

x'_p(t)=-3Asin(3t)+3Bcos(3t)

x''_p(t)=-9Acos(3t)-9sin(3t)

This solution satisfied the equation therefore, substitute the values in the differential equation

-9Acos(3t)-9Bsin(3t)-3Asin(3t)+3Bcos(3t)+12(Acos(3t)+Bsin(3t))=20cos(3t)

(3B+3A)cos(3t)+(3B-3A)sin(3t)=20cso(3t)

Comparing on both sides

3B+3A=20

3B-3A=0

Adding both equation then, we get

6B=20

B=\frac{20}{6}=\frac{10}{3}

Substitute the value of B in any equation

3A+10=20

3A=20-10=10

A=\frac{10}{3}

Particular solution, x_p(t)=\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

Now, the general solution

x(t)=e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

From initial condition

x(0)=2 ft

x'(0)=0

Substitute the values t=0 and x(0)=2

2=c_1+\frac{10}{3}

2-\frac{10}{3}=c_1

c_1=\frac{-4}{3}

x'(t)=-\frac{1}{2}e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+e^{-\frac{t}{2}}(-c_1\frac{\sqrt{47}}{2}sin(\frac{\sqrt{47}t}{2})+\frac{\sqrt{47}}{2}c_2cos(\frac{\sqrt{47}t}{2})-10sin(3t)+10cos(3t)

Substitute x'(0)=0

0=-\frac{1}{2}\times c_1+10+\frac{\sqrt{47}}{2}c_2

\frac{\sqrt{47}}{2}c_2-\frac{1}{2}\times \frac{-4}{3}+10=0

\frac{\sqrt{47}}{2}c_2=-\frac{2}{3}-10=-\frac{32}{3}

c_2==-\frac{64}{3\sqrt{47}}

Substitute the values then we get

x(t)=e^{-\frac{t}{2}}(-\frac{4}{3}cos(\frac{\sqrt{47}t}{2})-\frac{64}{3\sqrt{47}}sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

8 0
3 years ago
Evaluate abc if a = -2/5 , b = 20/32, and c = -4/10 . Express your answer as a fraction in simplest form. *
Bumek [7]

Remember that when multiplying fractions, we multiply everything on the top and everything on the bottom.

a * b * c

(-2 / 5) * (20 / 32) * (-4 / 10)

(-2 * 20 * -4) / (5 * 32 * 10)

160 / 1600

1 / 10

Correct answer: D. 1/10

Hope this helps!! :)

3 0
3 years ago
On a number line, show all points whose coordinates satisfy the following inequalities: |x−20|<5
VLD [36.1K]

Answer:

On the number line integers from 16 to 24 is the answer.

4 0
3 years ago
Read 2 more answers
Help me plzz I really need itttt​
saveliy_v [14]

Answer:

Step-by-step explanation:

4 0
3 years ago
Use a calculator to find the value of the trigonometric function to four decimal places. Tan 3.4??? A.0.2555 B.0.0594 C.0.9668 D
r-ruslan [8.4K]
The value of Tan 3.4 is 0.059410947 rounded off to four decimal places would equal to 0.0594, letter B. This is your answer if your calculator is in the degree mode. 

Tangent or Tan is one of the trigonometry functions. It represents TOA in the sohcahtoa mnemonic which means Tan = Opposite / Adjacent 
7 0
3 years ago
Other questions:
  • A person 5 ft tall casts a shadow 13ft long. At the same time a nearby tree casts a shadow 37 ft long. Find the height of the tr
    12·2 answers
  • Ashley solved the equation for m using the following steps. -4.5 + m = 17 -4.5  -4.5 m = 12.5 What was Ashley’s error?
    9·2 answers
  • What is the simplified base for the function f(x)=2 (3 sqrt 27^2x)?
    14·2 answers
  • The side of a triangle have length x, x+4, and 20. If the length of the longest side is 20, which value of x would make the tria
    5·1 answer
  • 3b+4 = 25 <br> solve for b <br> no work needed
    14·2 answers
  • PLEASE HELP!! WILL GIVE BRAINLIEST
    6·1 answer
  • What is the equation of the line that passes through the points (-4,-1) and (6,-1)
    7·1 answer
  • write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 and the given zeros 3,
    9·1 answer
  • Jaxon must sell at least 49 rolls of wrapping paper to support the robotics club fundraiser. He has already sold 24 rolls of wra
    7·2 answers
  • Question60 is 40% of what number?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!