< GEF and <CAB
beacuse they are at the end of the congruent lines
Step-by-step explanation:
![54 \frac{42 \sqrt{2 \sqrt[ \sqrt[2 \sqrt[22 \cot( \cot( \beta \cot(?) ) ) ]{?} ]{?} ]{?} } \times \frac{?}{?} }{?} \times \frac{?}{?} \times \frac{?}{?}](https://tex.z-dn.net/?f=54%20%5Cfrac%7B42%20%5Csqrt%7B2%20%5Csqrt%5B%20%5Csqrt%5B2%20%5Csqrt%5B22%20%5Ccot%28%20%5Ccot%28%20%5Cbeta%20%20%5Ccot%28%3F%29%20%29%20%29%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%7D%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%7D%7B%3F%7D%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20)
Answer:
i meant 7 bc it is isosceles.
Step-by-step explanation:
Answer:
Decompose the figure into two rectangles and add the areas.
Step-by-step explanation:
We can draw a vertical line segment from the smaller section of the rectangle straight down. This would cut the rectangle into 2 smaller rectangles. We can then find the area of each rectangle and add them to find the area of the composite figure.
Substituting the data points into the model:
f(x)= -x2 + 2x -3
f(-2)=-11
f(0)=-3
f(1)=-2
f(3)=-6
f(5)=-18
So A is the right ans.