Answer:
The measure of arc SQ is 95° ⇒ (1)
Step-by-step explanation:
- The measure of any circle is 360°
- The measure of the subtended arc to an inscribed angle is twice the measure of this angle
In the given circle
∵ S lies on the circumference of the circle
∴ ∠QSR is an inscribed angle
∵ ∠QSR is subtended by arc QR
→ By using the 2nd rule above
∴ m arc QR = 2 × m∠QSR
∵ m∠QSR = 95°
∴ m arc QR = 2 × 95
∴ m arc QR = 190°
→ By using the 1st rule above
∵ m of the circle = m arc QR + m arc SQ + m arc SR
∵ m arc SR = 75° and m arc QR = 190°
→ Substitute them in the equation above
∴ 360 = 190 + m arc SQ + 75
→ Add the like term in the right side
∴ 360 = 265 + m arc QS
→ Subtract 265 from both sides
∵ 360 - 265 = 265 - 265 + m arc SQ
∴ 95° = m arc SQ
∴ The measure of arc SQ is 95°
Answer:
Step-by-step explanation:
how we supposed to do it , when we cant control it
Answer:
18
Step-by-step explanation:
if AB : BC : AC is 3 : 4 : 2 and BC = 8 then AB = 6 and AC = 4
To calculate the perimeter of the triangle we add all side lengths up
4 + 6 + 8 = 18
The Answer Is 21.6 repeating
If A, B and C are collinear, then
1) if B is between A and C:
AC = AB + BC
AC = 48 + 22 = 70
2) if C is between A and B:
AB = AC + BC
48 = AC + 22 |-22
AC = 26
3) if A is between B and C:
BC = AB + AC
22 = 48 + AC |-48
AC = - 26 < 0 FALSE
Answer:
if B is between A and C, then AC = 70
if C is between A and B, then AC = 26