Answer:
1889.02
Step-by-step explanation:
Answer:
1/2
Step-by-step explanation:
The "Pythagorean relation" between trig functions can be used to find the sine.
<h3>Pythagorean relation</h3>
The relation between sine and cosine is the identity ...
sin(x)² +cos(x)² = 1
This can be solved for sin(x) in terms of cos(x):
sin(x) = √(1 -cos(x)²)
<h3>Application</h3>
For the present case, using the given cosine value, we find ...
sin(x) = √(1 -(√3/2)²) = √(1 -3/4) = √(1/4)
sin(x) = 1/2
__
<em>Additional comment</em>
The sine and cosine of an angle are the y and x coordinates (respectively) of the corresponding point on the unit circle. The right triangle with these legs will satisfy the Pythagorean theorem with ...
sin(x)² + cos(x)² = 1 . . . . . . where 1 is the hypotenuse (radius of unit circle)
A calculator can always be used to verify the result.
Answer:
70
Step-by-step explanation: the type of angle it is
Answer-
The exponential model best fits the data set.
Solution-
x = input variable = number of practice throws
y = output variable = number of free throws
Using Excel, Linear, Quadratic and Exponential regression model were generated.
The best fit equation and co-efficient of determination R² are as follows,
Linear Regression
Quadratic Regression
Exponential Regression
The value of co-efficient of determination R² ranges from 0 to 1, the more closer its value to 1 the better the regression model is.
Now,
Therefore, the Exponential Regression model must be followed.
Answer:
Step-by-step explanation:
Begining of the month, value of stock=$78.35
At the end, the loss = $12.80
Value of stock at the end of the month= the difference between both values
$78.35 - $12.80 = $65.55