Answer:
4x/117
Step-by-step explanation:
Answer:
Step-by-step explanation:
From the first image attached below, we will see the sketch of the curve x = y² & x = 2y
In the picture connected underneath, the concealed locale(shaded region) is bounded by the given curves. Now, we discover the marks of the crossing point of the curves. These curves will cross, when:

Thus, the shaded region fall within the interval 0 ≤ y ≤ 2
Now, from the subsequent picture appended we sketch the solid acquired by turning the concealed region about the y-axis.
For the cross-sectional area of the washer:

Finally, the volume of (solid) is:
![V = \int^2_0 A(y) \ dy \\ \\ V = \int^2_0 \pi (4y^2 -y^4) \ dy \\ \\ V = \pi \int^2_0 (4y^2 -y^4) \ dy \\ \\ V = \pi \Big[\dfrac{4}{3}y^3 - \dfrac{y^5}{5} \big ] ^2_0 \\ \\ V = \pi \Big [ \dfrac{4}{3}(2)^3-\dfrac{2^3}{5} \Big ] \\ \\ V = \dfrac{64}{15}\pi \\ \\ V = (4.27 ) \pi](https://tex.z-dn.net/?f=V%20%3D%20%5Cint%5E2_0%20A%28y%29%20%5C%20dy%20%5C%5C%20%5C%5C%20%20V%20%3D%20%5Cint%5E2_0%20%5Cpi%20%284y%5E2%20-y%5E4%29%20%5C%20dy%20%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5Cint%5E2_0%20%284y%5E2%20-y%5E4%29%20%5C%20dy%20%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5CBig%5B%5Cdfrac%7B4%7D%7B3%7Dy%5E3%20-%20%5Cdfrac%7By%5E5%7D%7B5%7D%20%20%20%5Cbig%20%5D%20%5E2_0%20%5C%5C%20%5C%5C%20%20V%20%3D%20%5Cpi%20%5CBig%20%5B%20%5Cdfrac%7B4%7D%7B3%7D%282%29%5E3-%5Cdfrac%7B2%5E3%7D%7B5%7D%20%5CBig%20%5D%20%20%5C%5C%20%5C%5C%20%20V%20%3D%20%5Cdfrac%7B64%7D%7B15%7D%5Cpi%20%20%5C%5C%20%5C%5C%20V%20%3D%20%284.27%20%29%20%5Cpi)
Answer:
Mia has a bag that contains a letter block for each of the 26 letters of the alphabet. She draws a letter block from the bag, writes down the letter, and puts the block back in the bag. She repeats this 26 times. The results show that she drew a vowel (A, E, I, O, or U) 6 times.
Step-by-step explanation:
Answer:
25
Step-by-step explanation:
11 time 2= 22+9= 31-6= 25
Answer:
uu 2256/665*55%66 ans yg hich ight pss am oz am oz em is am
Step-by-step explanation:
UCSB overrun if en off ab kv en edo श्mdm kem bhai kem ker