B. I think I’m really not sure that’s confusing as hell and I’ve passed that
Answer:
This function is an even-degree polynomial, so the ends go off in the same directions, just like every quadratic I've ever graphed. Since the leading coefficient of this even-degree polynomial is positive, the ends came in and left out the top of the picture, just like every positive quadratic you've ever graphed. All even-degree polynomials behave, on their ends, like quadratics.
Step-by-step explanation:
The domain is {-8}
The range is {5,6,7,8}
The relation is not a function as the domain value -8 maps to multiple values. All domain values in a relation needs to map to exactly one range value for it be a function.
x = 5i x =-5i
Step-by-step explanation:
x^2+25=0
Rewriting
x^2 - (-25)=0
Writing as the difference of squares
a^2 - b^2= (a-b) (a+b)
where a = x and b = (sqrt(-25)) =±5i
( x-5i) ( x+5i) =0
Using the zero product property
x-5i =0 x+5i =0
x = 5i x =-5i