Answer:
-30√(t/a) cos(√(at)) + 30/a sin(√(at)) + C
Step-by-step explanation:
∫ 15 sin(√(at)) dt
Use substitution:
If x = √(at), then:
dx = ½ (at)^-½ (a dt)
dx = a / (2√(at)) dt
dx = a/(2x) dt
dt = (2/a) x dx
Plugging in:
∫ 15 sin x (2/a) x dx
30/a ∫ x sin x dx
Integrate by parts:
If u = x, then du = dx.
If dv = sin x dx, then v = -cos x.
∫ u dv = uv − ∫ v du
= 30/a (-x cos x − ∫ -cos x dx)
= 30/a (-x cos x + ∫ cos x dx)
= 30/a (-x cos x + sin x + C)
Substitute back:
30/a (-√(at) cos(√(at)) + sin(√(at)) + C)
-30√(t/a) cos(√(at)) + 30/a sin(√(at)) + C
Answer:
Both cards are the same value.
Step-by-step explanation:
$10 for 200 points = $5 for 100 points
$15 for $300 points = $5 for $100 points
Both cards are the same value.
Answer
with
Step-by-step explanation:
Statement Reasons
1.∠1 ≅ 4 Given
2.∠1 = ∠2 Being Vertically opposite angles.
3.∠4 = ∠3 Being Vertically opposite angles.
4.∠2 = 3 From Statement no 2 & 3, Transitive property.
5.∠2 ≅ 3 From Statement 4
Proved.
Answer:
7is to 6
Step-by-step explanation:
u decide number with an common factor