____________________________________________________
Answer:
It represents the cost of the DVD player.
____________________________________________________
Step-by-step explanation:
The reason why it represents the cost of the DVD player is because in the question, it doesn't mention anything about buying multiple DVD players. Ebony would need to buy many DVD's, but doesn't need many DVD players because ebony could use one for all of the DVD's. If you noticed in the question, it says "a DVD player," what this means is that Ebony is only going to buy one DVD player, since it's singular (without and s at the end).
The equation is saying that she starts off with buying 1 DVD player for 200 dollars; and, she is buying n (number of DVDs) for 20 dollars each.
This shows that the 200 in the equation in the question represents the cost of the DVD player.
____________________________________________________
8:32 simplyfies to 1:4 .....there is your answer 1:4
Step-by-step explanation:
Below is an attachment containing the solution.
Answer:
5.52 is the length of wire
9514 1404 393
Answer:
(a) x = (3 -ln(3))/5 ≈ 0.819722457734
(b) y = 10
Step-by-step explanation:
(a) Taking the natural log of both sides, we have ...
2x +1 = ln(3) +4 -3x
5x = ln(3) +3 . . . . . . . . add 3x-1
x = (ln(3) +3)/5 ≈ 0.820
__
(b) Assuming "lg" means "log", the logarithm to base 10, we have ...
log(y -6) +log(y +15) = 2
(y -6)(y +15) = 100 . . . . . . . taking antilogs
y^2 -9x -190 = 0 . . . . . . . . eliminate parentheses, subtract 100
(y -19)(y +10) = 0 . . . . . . . . factor
The values of y that make these factors zero are -19 and 10. We know from the first term that (y-6) > 0, so y > 6. That means y = -19 is an extraneous solution.
The solution is ...
y = 10
__
When solving equations using a graphing calculator, it often works well to define a function f(x) such that the solution is f(x) = 0, the x-intercept(s). That form is easily obtained by subtracting the right side of the equation from both sides of the equation. In part (a) here, that is ...
f(x) = e^(2x+1) -3e^(4-3x)