Answer: Energy is stored in the body primarily as GLYCOGEN in the muscles and liver and as TRIGLYCERIDE in subcutaneous body fat.
Explanation:
We take in food for the purpose of ENERGY, building of worn out tissues of the body and to boost the body immunity. After the intake of food, amino acids from dietary protein are used to synthesize body proteins and other molecules, carbohydrate is used to maintain blood glucose and to build glycogen stores, fat is used for energy or stored in the body.
The body must have a steady supply of energy with some of it coming from the metabolism of glucose.
GLYCOGEN formation occurs when there is excess blood glucose level in the process called glycogenesis. It is the suitable way glucose can be stored as it is insoluble and can not disturb the osmotic pressure of the cells. When food is restricted over time, glycogen stores are expended, and the body must rely on the breakdown of stored GLYCOGEN to be converted to glucose for energy production.
Also, energy for tissues that don't require glucose can come from the breakdown of triglycerides in the adipose tissue. TRIGLYCERIDES are formed by the liver when excess calories are taken, and are stored in the adipose tissues.
Answer:
Porifera or Sponges
Explanation:
Porifera is the phylum of the simplest multicellular marine animals. Their body is composed of two cell layers (something like tissues) and mesophyl between them. The body is in direct contact with surrounding water through the large number of pores and channels. What makes Sponges so simple is that their cells are unspecialized and that they don't have nervous, digestive or circulatory systems.
Answer:
large central vacuole
cell wall
Explanation:
Let me clear some things up for you. There are two types of cells - Prokaryotes and Eukaryotes. The principle difference between these types of cells are the structure of their genome. In case of prokaryotes, the genomic matter do not have a defined structure, it just kind of floats around in the protoplasm. But in the eukaryotes, the genome is more structured, have all kinds of proteins associated with them, and is surrounded by a two layered sack called the nuclear membrane. Both plant and animal cells have these feature of structured nucleus, therefore, they are both eukaryotes.
Now for the difference between plant and animal cells. the features you mentioned are unique about plant cells, but do not rule them out from being eukaryotes, as the 'true' structure of the nucleus is still there. Cell walls are necessary for the plant cells because plants do not posses an endoskeleton like most of the animals do. The cell wall makes the whole plant rigid so they don't fall apart or appear like a blob. Chloroplast is where photosynthesis happens, so it should most definitely be in a plant cell. Animals don't do photosynthesis so they don't have chloroplasts. Vacuoles are also present in animal cells, but they are much smaller, greater in number, and are known as lysosomes. Functionally they are virtually the same.
Answer:
<em>At the respiratory membrane, where the alveolar and capillary walls meet, gases move across the membranes, with oxygen entering the bloodstream and carbon dioxide exiting. It is through this mechanism that blood is oxygenated and carbon dioxide, the waste product of cellular respiration, is removed from the body.</em>
<em></em>