1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
13

the length of a rectangle is five feet less than its width. If the area of the rectangle is 84 square feet, find its dimensions

Mathematics
1 answer:
KIM [24]3 years ago
6 0
Let
x---------> the length of the rectangle
y--------> the width of the rectangle

we know that
A=84 ft²
[area of rectangle]=x*y-----> 84=x*y-----> equation 1
x=y-5------> equation 2
substitute 2 in 1
84=[y-5]*y-----> 84=y²-5y---------> y²-5y-84=0

using a graph tool-----> to resolve the second order equation
see the attached figure

the solution is
y=12
x=y-5-----> x=12-5-----> x=7

the answer is
the length of the rectangle is 7 ft
the width of the rectangle is 12 ft

You might be interested in
Find the value of x + 16​
Tamiku [17]

Answer:

x=16,−16

Step-by-step explanation:

:/

8 0
2 years ago
An ordered pair is
yarga [219]

Answer:

B

Step-by-step explanation:

The m to the y can’t equal to m so it’s b

4 0
3 years ago
Sean places 28 tomato plants in rows. All rows contain the same number of plants. There are netween 5 and 12 plants in each row.
IrinaVladis [17]

Answer:

4 rows of 7 plants each

Step-by-step explanation:

To find the number of plants in each row between 5 and 12 requires us to find the factors of the total 28.

28 has factors 1,28 and 2,14 and 4,7. Only 4,7 has a number between 5 and 12. There are 4 rows of 7 plants.

7 0
3 years ago
An article reports "sales have grown by 30% this year, to $200 million." What were sales before the growth? An article reports "
zimovet [89]

The amount of sales before growth according to the article is $153.85 million

<h3>How to find sales before growth?</h3>

let

  • Sales before growth = x
  • Percentage growth = 30%
  • New sales = $200 million

200 = x + (30% × x)

200 = x + (0.3 × x)

200 = x + 0.3x

200 = 1.3x

x = 200/1.3

x = 153.846153846153

Approximately,

x = $153.85 million

Learn more about percentage:

brainly.com/question/843074

#SPJ1

8 0
2 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Other questions:
  • A rectangle is a _____.<br><br> a. quadrilateral<br> b. square<br> c. parallelogram<br> d. rhombus
    14·1 answer
  • Given AC ≅ FE and CB ≅ ED which statement is correct?
    7·2 answers
  • Rewrite the equation by completing the square 4x^2-4x+1=0
    13·2 answers
  • If 3/8" equals 3 ft, what does 5/8" equal
    9·1 answer
  • A square has side length of 9 in. If the area is doubled, what happens to the side length?
    8·1 answer
  • Justin has 20 pencils 25 erasers and 40 paper clip he organized them into groups with the same number of item of each group. all
    14·2 answers
  • Please help this is due today!!!<br><br>​
    5·2 answers
  • Use a protractor to find the angle measure picture is added
    10·1 answer
  • Solve 2w^2– 16w = 12W – 48 by factoring. Select the solution(s)
    14·1 answer
  • Abdul earns $51 per week working part time at a bookstore he makes one dollar more for each book that he sells the amount in dol
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!