Answer:
A-square
Step-by-step explanation:
The formula for the surface area of a cube is:
SA = 6a²
where a is the length of the cube
I think your answer would be 14 if this is what it’s asking for
Because 6/6 makes 1 so 13+1 is 14
Answer:
Step-by-step explanation:
1. Find two numbers that add to make the coefficient of x (in this case, -5) and that multiply to make the constant term multiplied by the coefficient of x^2 (in this case, -2 x 3 = -6)
Two numbers that work are -6 and +1
-6 x +1 = -6
-6 + -1 = -5
2. Split the middle term into the two numbers that you found.
3x^2 -6x +x -2 = 0
I've put the -6 on the left side because in our next step, when we factorise, it will be easier than having the numbers the other way around.
3. Factorise the left side by taking out common factors from each pair. The pairs I'm talking about here are '3x^2 and -6x', and 'x and -2'
3x (x-2) +1 (x-2) = 0
4. You now have two numbers both being multiplied by the term x-2. We can rearrange this equation to give us two brackets being multiplied by each other.
(3x + 1) (x-2) = 0
5. According to the Null Factor Law, if two terms are multiplied together and the result is 0, then one of those terms must be 0. Make both terms equal to 0 and solve each for x.
3x + 1 = 0 x-2 = 0
3x = -1 x = 2
x = -1/3
6. The solutions to this equation are x = 2 and x = -1/3
Answer:
d one i think
hope it helps
the sum of triangle is 180 degree
I'll leave the computation via R to you. The
are distributed uniformly on the intervals
, so that

each with mean/expectation
![E[W_i]=\displaystyle\int_{-\infty}^\infty wf_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac w{10i}\,\mathrm dw=5i](https://tex.z-dn.net/?f=E%5BW_i%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20wf_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%20w%7B10i%7D%5C%2C%5Cmathrm%20dw%3D5i)
and variance
![\mathrm{Var}[W_i]=E[(W_i-E[W_i])^2]=E[{W_i}^2]-E[W_i]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3DE%5B%28W_i-E%5BW_i%5D%29%5E2%5D%3DE%5B%7BW_i%7D%5E2%5D-E%5BW_i%5D%5E2)
We have
![E[{W_i}^2]=\displaystyle\int_{-\infty}^\infty w^2f_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac{w^2}{10i}\,\mathrm dw=\frac{100i^2}3](https://tex.z-dn.net/?f=E%5B%7BW_i%7D%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20w%5E2f_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%7Bw%5E2%7D%7B10i%7D%5C%2C%5Cmathrm%20dw%3D%5Cfrac%7B100i%5E2%7D3)
so that
![\mathrm{Var}[W_i]=\dfrac{25i^2}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3D%5Cdfrac%7B25i%5E2%7D3)
Now,
![E[W_1+W_2+W_3]=E[W_1]+E[W_2]+E[W_3]=5+10+15=30](https://tex.z-dn.net/?f=E%5BW_1%2BW_2%2BW_3%5D%3DE%5BW_1%5D%2BE%5BW_2%5D%2BE%5BW_3%5D%3D5%2B10%2B15%3D30)
and
![\mathrm{Var}[W_1+W_2+W_3]=E\left[\big((W_1+W_2+W_3)-E[W_1+W_2+W_3]\big)^2\right]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5Cleft%5B%5Cbig%28%28W_1%2BW_2%2BW_3%29-E%5BW_1%2BW_2%2BW_3%5D%5Cbig%29%5E2%5Cright%5D)
![\mathrm{Var}[W_1+W_2+W_3]=E[(W_1+W_2+W_3)^2]-E[W_1+W_2+W_3]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5B%28W_1%2BW_2%2BW_3%29%5E2%5D-E%5BW_1%2BW_2%2BW_3%5D%5E2)
We have

![E[(W_1+W_2+W_3)^2]](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D)
![=E[{W_1}^2]+E[{W_2}^2]+E[{W_3}^2]+2(E[W_1]E[W_2]+E[W_1]E[W_3]+E[W_2]E[W_3])](https://tex.z-dn.net/?f=%3DE%5B%7BW_1%7D%5E2%5D%2BE%5B%7BW_2%7D%5E2%5D%2BE%5B%7BW_3%7D%5E2%5D%2B2%28E%5BW_1%5DE%5BW_2%5D%2BE%5BW_1%5DE%5BW_3%5D%2BE%5BW_2%5DE%5BW_3%5D%29)
because
and
are independent when
, and so
![E[(W_1+W_2+W_3)^2]=\dfrac{100}3+\dfrac{400}3+300+2(50+75+150)=\dfrac{3050}3](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D%3D%5Cdfrac%7B100%7D3%2B%5Cdfrac%7B400%7D3%2B300%2B2%2850%2B75%2B150%29%3D%5Cdfrac%7B3050%7D3)
giving a variance of
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{3050}3-30^2=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B3050%7D3-30%5E2%3D%5Cdfrac%7B350%7D3)
and so the standard deviation is 
# # #
A faster way, assuming you know the variance of a linear combination of independent random variables, is to compute
![\mathrm{Var}[W_1+W_2+W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D)
![=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]+2(\mathrm{Cov}[W_1,W_2]+\mathrm{Cov}[W_1,W_3]+\mathrm{Cov}[W_2,W_3])](https://tex.z-dn.net/?f=%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D%2B2%28%5Cmathrm%7BCov%7D%5BW_1%2CW_2%5D%2B%5Cmathrm%7BCov%7D%5BW_1%2CW_3%5D%2B%5Cmathrm%7BCov%7D%5BW_2%2CW_3%5D%29)
and since the
are independent, each covariance is 0. Then
![\mathrm{Var}[W_1+W_2+W_3]=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D)
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{25}3+\dfrac{100}3+75=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B25%7D3%2B%5Cdfrac%7B100%7D3%2B75%3D%5Cdfrac%7B350%7D3)
and take the square root to get the standard deviation.