The consecutive positive integers would be: x and (x+1),
We would have to solve the following equation to find these numbers:
x(x+1)-[x+(x+1)]=29
x²+x-2x-1=29
x²-x-30=0
x=[1⁺₋√(1+120)]/2
x=(1⁺₋11)/2
We have two possible solutions:
x₁=(1-11)/2=-5 then: (x+1)=-5+1=-4 This is not the solution.
x₂=(1+11)/2=6 then: (x+1)=6+1=7 This solution is right.
Answer: the numbers would be 6 and 7.
![\bf \textit{difference and sum of cubes} \\\\ a^3+b^3 = (a+b)(a^2-ab+b^2) \\\\ a^3-b^3 = (a-b)(a^2+ab+b^2) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} 729=27^2\\ \qquad (3^3)^2\\ 1000=10^3 \end{cases}\implies 729^{15}+1000\implies ((3^3)^2)^{15}+10^3 \\\\\\ ((3^2)^{15})^3+10^3\implies (3^{30})^3+10^3\implies (3^{30}+10)~~[(3^{30})^2-(3^{30})(10)+10^2] \\\\\\ (3^{30})^3+10^3\implies (3^{30}+10)~~~~[(3^{60})-(3^{30})(10)+10^2]](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdifference%20and%20sum%20of%20cubes%7D%20%5C%5C%5C%5C%20a%5E3%2Bb%5E3%20%3D%20%28a%2Bb%29%28a%5E2-ab%2Bb%5E2%29%20%5C%5C%5C%5C%20a%5E3-b%5E3%20%3D%20%28a-b%29%28a%5E2%2Bab%2Bb%5E2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20729%3D27%5E2%5C%5C%20%5Cqquad%20%283%5E3%29%5E2%5C%5C%201000%3D10%5E3%20%5Cend%7Bcases%7D%5Cimplies%20729%5E%7B15%7D%2B1000%5Cimplies%20%28%283%5E3%29%5E2%29%5E%7B15%7D%2B10%5E3%20%5C%5C%5C%5C%5C%5C%20%28%283%5E2%29%5E%7B15%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%2B10%29~~%5B%283%5E%7B30%7D%29%5E2-%283%5E%7B30%7D%29%2810%29%2B10%5E2%5D%20%5C%5C%5C%5C%5C%5C%20%283%5E%7B30%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%2B10%29~~~~%5B%283%5E%7B60%7D%29-%283%5E%7B30%7D%29%2810%29%2B10%5E2%5D)
now, we could expand them, but there's no need, since it's just factoring.
<span>Absolute value of -98 is 98
Hope I helped:D </span>
Answer:
x<-1
Step-by-step explanation:
I think and hope it helps
Draw the diameter from point (-1, -5) to point (2, 3).
The triangle has base 3 and height 8.
The diameter of the semicircle is the hypotenuse of the triangle.


The radius is half the diameter.

The total area is the area of the triangle plus the area of the semicircle.

