Answer:
2/3
Step-by-step explanation:
Use the formula for finding gradient.
Answer:
(a) 315°
(b) 3°
(c) 238°
Step-by-step explanation:
Bearings are measured clockwise from north. The triangle described is illustrated in the attachment.
<h3>(a)</h3>
The bearing of P from R is 180° different from the bearing of R from P it will be ...
135° +180° = 315° . . . . bearing of P from R
__
<h3>(b)</h3>
The bearing of Q from R is 48° more than the bearing of P from R, so is ...
315° +48° = 363°, or 3° . . . . bearing of Q from R
__
<h3>(c)</h3>
The angle QPR has a value that makes the sum of angles in the triangle equal to 180°. It is ...
180° -48° -55° = 77°
The bearing of Q from P is 77° less than the bearing of R from P, so is ...
135° -77° = 58°
As above, the reverse bearing from Q to P is ...
58° +180° = 238° . . . . bearing of P from Q
Answer:
Approximately 6.4
Step-by-step explanation:
We can use the pythagorean thereom here, that tells us (a^2)+(b^2)=c^2. C is the hypotenuse, the side opposite from the right angle, while a and b are the other sides. We can insert 5 and 4 as a and b, and solve for c
:(5^2)+(4^2)=c^2
:25+16=c^2
:41=c^2
:sqrt(41)=6.4=c (We square rooted both sides. 6.4 is only rounded to the nearest hundredths place.) Hope this helps!
Answer:
B
Step-by-step explanation:
Formula: 4*((15*7)/2) + 15^2
This is the area of the four triangles combined (210 cm^2) plus the area of the square (225 cm^2)