Answer:
The absolute maximum and minimum of
on
are 113 and 5.
Step-by-step explanation:
Let be
, the first and second derivatives of the function are, respectively:
![f'=54-6\cdot x^{2}](https://tex.z-dn.net/?f=f%27%3D54-6%5Ccdot%20x%5E%7B2%7D)
![f''=-12\cdot x](https://tex.z-dn.net/?f=f%27%27%3D-12%5Ccdot%20x)
Now, let equalize the first derivative to zero and solve the resulting expression:
![54-6\cdot x^{2} = 0](https://tex.z-dn.net/?f=54-6%5Ccdot%20x%5E%7B2%7D%20%3D%200)
![x^{2} = 9](https://tex.z-dn.net/?f=x%5E%7B2%7D%20%3D%209)
![x =\pm 3](https://tex.z-dn.net/?f=x%20%3D%5Cpm%203)
According to the given interval, only
is a valid outcome. Lastly, this is evaluated in the second derivative expression:
![f''=-12\cdot(3)](https://tex.z-dn.net/?f=f%27%27%3D-12%5Ccdot%283%29)
![f'' = -36](https://tex.z-dn.net/?f=f%27%27%20%3D%20-36)
leads to an absolute maximum.
![f(3) = 5 + 54\cdot (3) -2\cdot (3)^{3}](https://tex.z-dn.net/?f=f%283%29%20%3D%205%20%2B%2054%5Ccdot%20%283%29%20-2%5Ccdot%20%283%29%5E%7B3%7D)
![f(3) = 113](https://tex.z-dn.net/?f=f%283%29%20%3D%20113)
The absolute minimum is determined by evaluating at each extreme of the interval:
![x = 0](https://tex.z-dn.net/?f=x%20%3D%200)
![f(0) = 5 + 54\cdot (0) -2\cdot (0)^{3}](https://tex.z-dn.net/?f=f%280%29%20%3D%205%20%2B%2054%5Ccdot%20%280%29%20-2%5Ccdot%20%280%29%5E%7B3%7D)
![f(0) = 5](https://tex.z-dn.net/?f=f%280%29%20%3D%205)
![x = 4](https://tex.z-dn.net/?f=x%20%3D%204)
![f(4) = 5 + 54\cdot (4) -2\cdot (4)^{3}](https://tex.z-dn.net/?f=f%284%29%20%3D%205%20%2B%2054%5Ccdot%20%284%29%20-2%5Ccdot%20%284%29%5E%7B3%7D)
![f(4) = 93](https://tex.z-dn.net/?f=f%284%29%20%3D%2093)
The absolute maximum and minimum of
on
are 113 and 5.