The relationship between x and y is represent as:
Since, the relationship is linear.
The standard form of equation of line is:

Consider any two set x and y values from the given relationship.
Let (-2, 10) and (-1,7.5)


The equation of the linear relationship between x and y is:
y = -2.5(x + 2) + 10
Now, to check that the point (9, -17.5) lies on the represented relationship between x and y
Substitute x = 9 and y = -17.5 in the equation y = -2.5(x + 2) + 10
y = -2.5(x + 2) + 10
-17.5 = -2.5(9 + 2) + 10
-17.5 = -2.5(11) + 10
-17.5 = -27.5 + 10
-17.5 = -17.5
Thus, LHS = RHS
Hence the point (9, -17.5) lie on the given linear relationship between x and y.
Answer: The point (9, -17.5) lie on the given linear relationship between x and y.
Answer:
three quarter noted as as fraction would be 3/4
each quarter note is 1/4 of a whole note, or one beat in a measure of 4-4
so three of them would be
1/4+1/4+1/4=3/4
Answer:
<em>x = 437.3 ft</em>
Step-by-step explanation:
<u>Right Triangles</u>
In right triangles, where one of its internal angles measures 90°, the trigonometric ratios are satisfied.
We have completed the figure below with the missing internal angle A that measures A = 90° - 29° = 61° because the lines marked with an arrow are parallel.
Given the internal angle A, we can relate the unknown side of length x with the known side length of 500 ft, the hypotenuse of the triangle. We use the sine ratio:


Solving for x:

Calculating:
x = 437.3 ft
Answer: 0.9762
Step-by-step explanation:
Let A be the event that days are cloudy and B be the event that days are rainy for January month .
Given : The probability that the days are cloudy = 
The probability that the days are cloudy and rainy = 
Now, the conditional probability that a randomly selected day in January will be rainy if it is cloudy is given by :-

Hence, the probability that a randomly selected day in January will be rainy if it is cloudy = 0.9762
The unit rate is 12.65 per hour.