The answer is (1) because 7,300,000-3,900,000 is 3,400,000
A. 4 dimes and 1 penny because it equal 41 cents, 7 nickels and 6 pennies equal 41 cents too
Answer:
0.3333 = 33.33% probability that the employee will arrive between 8:15 a.m. and 8:25 a.m.
Step-by-step explanation:
A distribution is called uniform if each outcome has the same probability of happening.
The uniform distributon has two bounds, a and b, and the probability of finding a value between c and d is given by:

A particular employee arrives at work sometime between 8:00 a.m. and 8:30 a.m.
We can consider 8 am = 0, and 8:30 am = 30, so 
Find the probability that the employee will arrive between 8:15 a.m. and 8:25 a.m.
Between 15 and 25, so:

0.3333 = 33.33% probability that the employee will arrive between 8:15 a.m. and 8:25 a.m.
9514 1404 393
Answer:
nπ -π/6 . . . for any integer n
Step-by-step explanation:
tan(x) +√3 = -2tan(x) . . . . . given
3tan(x) = -√3 . . . . . . . . . . . add 2tan(x)-√3
tan(x) = -√3/3 . . . . . . . . . . divide by 3
x = arctan(-√3/3) = -π/6 . . . . use the inverse tangent function to find x
This is the value in the range (-π/2, π/2). The tangent function repeats with period π, so the set of values of x that will satisfy this equation is ...
x = n·π -π/6 . . . . for any integer n
Answer:
Step-by-step explanation:
They should purchase the $369 one with the $9 plan.
330 + (14x8) =442
369+ (9x8) = 441
Hope this helps!