1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
4 years ago
13

A driver runs over a nail, puncturing the tire without causing a leak. The position of the nail in the tire, with relation to th

e ground, while the car is moving at a constant speed is shown in the table.
Time (s) Approximate height of the nail off the ground (inches)
0 0
0.01 2.1
0.02 7.6
0.03 14.9
0.04 21.5
0.05 25.5
0.06 25.5
0.07 21.5

Which key features of the function representing the nail’s travel can be used to determine the amount of time it takes for the nail to reach the same orientation it had when it entered the tire?

A. period
B. minimum
C. maximum
D. amplitude
Mathematics
2 answers:
Elina [12.6K]4 years ago
7 0

Answer: period

Step-by-step explanation:

Alex787 [66]4 years ago
4 0

Answer:

The correct option is A.

Step-by-step explanation:

It is given that a driver runs over a nail, puncturing the tire without causing a leak.

Tire of a car represents a periodic function because after a particular time the tire comes its initial stage and that particular time interval is called a period.

It means period is the key feature of the function representing the nail’s travel can be used to determine the amount of time it takes for the nail to reach the same orientation it had when it entered the tire.

Therefore the correct option is A.

You might be interested in
Whats 1,234 in word form
yaroslaw [1]
1,234

One thousand
Two hundred
Thirty four
8 0
3 years ago
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
Find all values of x that make the triangles congruent. Explain your reasoning.
RSB [31]

Answer:

x = \frac{4}{5},5

Step-by-step explanation:

If both the triangles ΔABC and ΔBCD are congruent,

Corresponding sides of both the triangles will be proportional.

\frac{AB}{BD}=\frac{AC}{CD}

\frac{5x}{3x+10}=\frac{5x-2}{4x+3}

5x(4x + 3) = (5x - 2)(3x + 10)

20x² + 15x = 15x² + 50x - 6x - 20

20x² + 15x = 15x² + 44x - 20

20x² - 15x² = 44x - 15x - 20

5x² = 29x - 20

5x² - 29x + 20 = 0

5x² - 25x - 4x + 20 = 0

5x(x - 5) - 4(x - 5) = 0

(5x - 4)(x - 5) = 0

x=\frac{4}{5},5

3 0
3 years ago
Please Help Me!!!! PICTURE INCLUDED!!!
disa [49]
The answer is 40 degrees
7 0
3 years ago
Help please!! Based on Pythagorean identities, which equation is true ??
alexgriva [62]

Answer:

Last answer: cot^{2} \alpha  - csc^{2} \alpha  = -1

sorry couldn't find theata so I just used alpha.

4 0
3 years ago
Other questions:
  • Ninety percent of what number is 45
    6·1 answer
  • How many cubes would be in the tower that is 3 cubes y’all?
    13·1 answer
  • 15. (NO CALCULATOR) A restaurant took 1/3 of an hour to use 1/5 of a
    9·1 answer
  • Find the area of a circle with a circumference of 6 pi
    15·2 answers
  • Pascal wanted the area of the floor to be 54 ft.² in the word still to be 2/3 the lake what was the demons
    10·1 answer
  • Enter your answer and show all the steps that you use to solve this problem in the space provided. A.Solve a–9=20 B.Solve b–9&gt
    5·1 answer
  • Solve for x. <br> 2(x-2)= 6x + 2 -2(-2x - 4)
    5·1 answer
  • Round 169.36 to the nearest yard
    7·1 answer
  • 22(x)=44 what is the answer to this problem?
    14·2 answers
  • The island has 600 bikes and 900 people. What is the bike to person ratio
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!