1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
15

a coin is tossed. find the probability of the coin landing on heads. write your answer as a fraction, percent, and decimal

Mathematics
2 answers:
inysia [295]3 years ago
6 0
Since there are only two sides (heads & tails) to a coin:
Probability (as fraction) - 1/2
Probability (as percent) - 1/2 x 100 = 50%
Probability (as decimal) - 1 x 50/2 x 50 = 50/100 = 0.5


(P.S. Please mark this answer as the brainliest answer... Thank You)
RoseWind [281]3 years ago
6 0
<u>→ Chapter : Probability ←</u>
<u><em>≡ We know that:</em></u>
⇔ There is only 2 option in one coin, Those are head and tails 
⇔ n(A)=1
⇔ n(S)=2

<u><em>≡ Solution:</em></u>
⇒ P(A)= \frac{n(A)}{n(S)}= \boxed{\frac{1}{2}} [In form of fraction]
⇒ (\frac{1}{2}).(100)=\boxed{50}Percent [In form of percent]
⇒ \frac{1}{2}=\frac{50}{100}=\boxed{0,5} [In form of decimal]

You might be interested in
The point P= (x,-1/7) lies on the unit circle shown below. What is the value of x in simplest form? ​
ipn [44]

Answer:

x^2 + \frac{1}{49} =1

And solving for x we got:

x^2 = 1- \frac{1}{49}

x^2 = \frac{48}{49}

And taking square root we got:

x = \sqrt{\frac{48}{49}}= \frac{\sqrt{48}}{7} = \frac{4\sqrt{3}}{7}

Step-by-step explanation:

For this case we have the following point given P(x , -1/7)

And we want to find the value of x, since P lies on the unitray circle if we find the distance from P to the center of the unitary circle (0,0) we need to get 1. Using the definition of Euclidean distance that means:

d = \sqrt{(x -0)^2 +(-1/7 -0)^2}=1

And if we square both sides of the last equation we got:

x^2 + \frac{1}{49} =1

And solving for x we got:

x^2 = 1- \frac{1}{49}

x^2 = \frac{48}{49}

And taking square root we got:

x = \sqrt{\frac{48}{49}}= \frac{\sqrt{48}}{7} = \frac{4\sqrt{3}}{7}

3 0
3 years ago
The sum of two numbers is equal to 11 and the difference is 19. What are the two numbers?
charle [14.2K]

\bold{\huge{\pink{\underline{ Solution }}}}

<u>We </u><u>have </u><u>given </u><u>in </u><u>the </u><u>question </u><u>that</u><u>, </u>

  • <u>The </u><u>sum </u><u>of </u><u>2</u><u> </u><u>numbers </u><u>is </u><u>equal </u><u>to </u><u>1</u><u>1</u><u> </u>
  • <u>The </u><u>difference </u><u>between </u><u>two </u><u>numbers </u><u>is </u><u>1</u><u>9</u><u> </u><u>.</u>

\bold{\underline{ To \: Find }}

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y</u><u>. </u>

\bold{\underline{ Let's \: Begin }}

Let the two numbers be x and y

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

\sf{ x + y = 11......eq(1) }

\sf{ x - y = 19......eq(2) }

<u>Solving </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>

\sf{ x + y = 11  }

\sf{ x = 11 - y ......eq(3 ) }

<u>Subsituting </u><u>eq(</u><u>3</u><u> </u><u>)</u><u> </u><u>in </u><u>eq</u><u>(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>

\sf{ x - y = 19 }

\sf{ ( 11 - y) - y = 19 }

\sf{ 11 - y - y = 19 }

\sf{  11 - 2y = 19 }

\sf{ - 2y = 19 - 11  }

\sf{ - 2y = 8}

\sf{ y = 8/(-2) }

\sf{ y = - 4 }

\sf{\red{Thus ,\: the\: value\: of \: y = -4}}

<u>Now</u><u>, </u><u> </u><u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>3</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>

\sf{ x = 11 - y  }

\sf{ x = 11 - (-4 )  }

\sf{ x = 11 + 4  }

\sf{ x = 15 }

Hence, The value of x and y are 15 and (-4) .

5 0
2 years ago
If y varies directly as x and y = 12 when x = 8, find y when x = 14.
Alex17521 [72]
The direct variation between x and y may be written as,
                                    y = kx
where k is the constant of variation. From the first set of values of the variables,
                                 12 = k(8)
the value of k is 1.5. Substituting the next set to the same equation,
                                 y = 1.5(14) 
The value of y is 21. 
8 0
3 years ago
Easy Problem just need to make sure I got it right
zloy xaker [14]

Answer:

a

Step-by-step explanation:

We first require the fraction of English to Total

Total = 84 + 38 + 18 + 47 + 69 = 256 , then

\frac{69}{256} × 100% ≈ 27% ( nearest whole number )

5 0
3 years ago
Any Ideas on How to solve this Question? And if possible the Solution itself.
sweet [91]

The lower quartile is 60. Quartiles are the numbers in the middle of the median and lowest/highest number.

5 0
3 years ago
Other questions:
  • <img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B5y%7D%7B2%7D%20%20-%20%20%5Cfrac%7B1%7D%7B2%7D%20" id="TexFormula1" title=" \frac
    5·1 answer
  • A commercial airplane travels 5,000 feet east and then ascends 3,000 feet from its starting point in the sky. Upon noticing a se
    14·1 answer
  • A wrestler is trying to gain weight for an upcoming match. His current weight is 105. In the formula shown, W = weight, p = poun
    10·2 answers
  • 1.) What is the area of the triangle?<br> 10.6 cm<br> 10.6 cm<br> 16 cm
    5·1 answer
  • What are the known solutions to f(x)=g(x)
    13·1 answer
  • I need help show the steps
    14·1 answer
  • Which is a graph of y=3x−1?
    9·1 answer
  • 4 pencils costs<br>GH¢ 2.oo<br>find the cost<br>of 20 pencils​
    8·1 answer
  • truck has 5 crates of apples. Each crate has an equal number of apples. Altogether, the truck is carrying 5,460 apples. How many
    15·1 answer
  • Amit’s school bus travelsat 36km/hr and Sushma’s school bus travels at 11 m/s. Whose school bus is faster ?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!