First we find the zeroes so we don't take the integral of negative bits
4x-x²
x(4-x)
zeroes at x=0 and x=4
it opens down
so the part we are interested in is the bit between x=0 and x=4
![\int\limits^4_0 {4x-x^2} \, dx =[2x^2- \frac{1}{3}x^3]^4_0=(32- \frac{64}{3})-(0)= 10.6666666666](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E4_0%20%7B4x-x%5E2%7D%20%5C%2C%20dx%20%3D%5B2x%5E2-%20%5Cfrac%7B1%7D%7B3%7Dx%5E3%5D%5E4_0%3D%2832-%20%5Cfrac%7B64%7D%7B3%7D%29-%280%29%3D%20%2010.6666666666)
or aout 10 and 2/3
C is answer
I think the answer is 1.125
7-63.92.28 is the answer hopes this helps
Answer:
5:4
Step-by-step explanation:
40:32
20:16
10:8
5:4
Answer:
4x^2 + 12x + 9.
Step-by-step explanation:
(2x+3)^2
= (2x+3)(2x+3)
= 2x(2x+3)+3(2x+3)
= 4x^2 + 6x + 6x + 9
= 4x^2 + 12x + 9.